{"title":"Statistical Simulation of Spaceborne Lidar Pulse Propagation in Cirrus Clouds Taking into Account Multiple Scattering","authors":"T. V. Russkova, V. A. Shishko","doi":"10.1134/S1024856024701057","DOIUrl":null,"url":null,"abstract":"<p>Laser remote sensing of cirrus clouds is accompanied by the problem of taking into account the multiple scattering of radiation, which influences the reliability of measurement interpretation. The contribution of multiple scattering of radiation to echo signals of a spaceborne lidar is estimated. The nonstationary problem of laser pulse propagation in continuous cirrus clouds with separation by scattering multiplicities is solved by the Monte Carlo method at different values of the optical and microstructural characteristics of clouds (optical thickness and shape and size of ice particles) and lidar parameters (distance from the sensing object, beam divergence, and field of view of the receiver). Numerical experiments were carried out taking into account the permissible range of the parameters for operational or promising spaceborne lidar systems. The features of the formation of the backward signal when aerosol and Rayleigh particles, as well as the underlying cloud layer, are introduced into the atmospheric model are discussed. The simulation results indicate the high sensitivity of the echo signal part caused by multiply scattered radiation to the parameters under study, which should be taken into account when formulating and solving inverse problems.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 6","pages":"798 - 807"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024701057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Laser remote sensing of cirrus clouds is accompanied by the problem of taking into account the multiple scattering of radiation, which influences the reliability of measurement interpretation. The contribution of multiple scattering of radiation to echo signals of a spaceborne lidar is estimated. The nonstationary problem of laser pulse propagation in continuous cirrus clouds with separation by scattering multiplicities is solved by the Monte Carlo method at different values of the optical and microstructural characteristics of clouds (optical thickness and shape and size of ice particles) and lidar parameters (distance from the sensing object, beam divergence, and field of view of the receiver). Numerical experiments were carried out taking into account the permissible range of the parameters for operational or promising spaceborne lidar systems. The features of the formation of the backward signal when aerosol and Rayleigh particles, as well as the underlying cloud layer, are introduced into the atmospheric model are discussed. The simulation results indicate the high sensitivity of the echo signal part caused by multiply scattered radiation to the parameters under study, which should be taken into account when formulating and solving inverse problems.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.