Ali Razgordanisharahi, Ata Alipour Ghassabi, Gullu Kiziltas Sendur, Yaser Kiani, Christian Hellmich
{"title":"Buckling and free vibration characteristics of cylindrical sandwich shells with porous cores and nanocomposite-reinforced face sheets","authors":"Ali Razgordanisharahi, Ata Alipour Ghassabi, Gullu Kiziltas Sendur, Yaser Kiani, Christian Hellmich","doi":"10.1007/s43452-025-01156-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses a critical gap in the literature by developing a unified analytical model for evaluating the stability and dynamic behavior of cylindrical sandwich shells with functionally graded nanocomposite face sheets and variable-porosity cores. The model incorporates graphene nanoplatelets (GNP) and carbon nanotubes (CNT) as reinforcements, with varying distribution patterns across the nanocomposite face sheets. The governing equations are derived using Hamilton’s principle, and an analytical approach based on the state-space method is applied to compute natural frequencies and critical buckling loads under classical boundary conditions. Verification studies confirm the model’s accuracy. The results highlight the significant effects of geometric and material parameters, including reinforcement and porosity distribution profiles, boundary conditions, and shell dimensions, on the buckling and free vibration responses of the structures. Notably, increasing the porosity ratio reduces the critical buckling load and natural frequencies, while a higher nanoparticle weight fraction enhances the fundamental frequencies and critical buckling load.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01156-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses a critical gap in the literature by developing a unified analytical model for evaluating the stability and dynamic behavior of cylindrical sandwich shells with functionally graded nanocomposite face sheets and variable-porosity cores. The model incorporates graphene nanoplatelets (GNP) and carbon nanotubes (CNT) as reinforcements, with varying distribution patterns across the nanocomposite face sheets. The governing equations are derived using Hamilton’s principle, and an analytical approach based on the state-space method is applied to compute natural frequencies and critical buckling loads under classical boundary conditions. Verification studies confirm the model’s accuracy. The results highlight the significant effects of geometric and material parameters, including reinforcement and porosity distribution profiles, boundary conditions, and shell dimensions, on the buckling and free vibration responses of the structures. Notably, increasing the porosity ratio reduces the critical buckling load and natural frequencies, while a higher nanoparticle weight fraction enhances the fundamental frequencies and critical buckling load.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.