In recent years, geosynthetic-reinforced pile-supported (GRPS) embankments have gathered increasing attention in the scientific community for their effectiveness in improving soft ground. This study aims to investigate the load transfer of double-layer GRPS embankments using the discrete element method (DEM), with a focus on soil arching effects and membrane effects. A coefficient, denoted as η and defined as h/H, was introduced to study the influence of the distance between two geosynthetics on load transfer. The results indicated: (1) Double-layer GRPS embankments demonstrated uniform load transmission downwards, thereby reducing the large deformation zone within the embankment fill. (2) Maximum tension in geosynthetics occurred at the edges of pile caps in both single-layer and double-layer GRPS embankments. However, double-layer GRPS embankments effectively mitigated the maximum tension in geosynthetics. (3) Double-layer GRPS embankments minimized soil arching formation within the embankment while enhancing membrane effects. (4) With increasing η, soil arching gradually formed between the two layers of geosynthetics. (5) Above a η threshold of 0.1, the maximum tension in the lower layer of geosynthetics significantly exceeded that in the upper layer.