Progress in estimating the state of health using transfer learning–based electrochemical impedance spectroscopy of lithium-ion batteries

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2025-01-14 DOI:10.1007/s11581-025-06065-y
Guangheng Qi, Guangwen Du, Kai Wang
{"title":"Progress in estimating the state of health using transfer learning–based electrochemical impedance spectroscopy of lithium-ion batteries","authors":"Guangheng Qi,&nbsp;Guangwen Du,&nbsp;Kai Wang","doi":"10.1007/s11581-025-06065-y","DOIUrl":null,"url":null,"abstract":"<div><p>With the widespread application of energy storage systems, health monitoring of lithium-ion batteries (LIBs) has become important. Transfer learning (TL) provides new ideas and methods for battery health management and life prediction in the field of battery life prediction. This article spotlights the application of TL in enhancing electrochemical impedance spectroscopy (EIS) for the state of health (SOH) estimation of LIBs. It delineates the pivotal role of TL in addressing data scarcity and domain discrepancies to refine prediction accuracy. The review synthesizes recent advancements in utilizing TL with EIS data, detailing the methodology from experimental data sourcing to feature extraction, accuracy metrics, and performance analysis. It concludes by forecasting potential research directions in leveraging TL for more precise health diagnostics of LIBs and life cycle prediction.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 3","pages":"2337 - 2349"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06065-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the widespread application of energy storage systems, health monitoring of lithium-ion batteries (LIBs) has become important. Transfer learning (TL) provides new ideas and methods for battery health management and life prediction in the field of battery life prediction. This article spotlights the application of TL in enhancing electrochemical impedance spectroscopy (EIS) for the state of health (SOH) estimation of LIBs. It delineates the pivotal role of TL in addressing data scarcity and domain discrepancies to refine prediction accuracy. The review synthesizes recent advancements in utilizing TL with EIS data, detailing the methodology from experimental data sourcing to feature extraction, accuracy metrics, and performance analysis. It concludes by forecasting potential research directions in leveraging TL for more precise health diagnostics of LIBs and life cycle prediction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的锂离子电池电化学阻抗谱估计健康状态的研究进展
随着储能系统的广泛应用,锂离子电池(LIB)的健康监测变得十分重要。在电池寿命预测领域,迁移学习(TL)为电池健康管理和寿命预测提供了新的思路和方法。本文重点介绍了迁移学习在增强电化学阻抗光谱(EIS)以评估锂离子电池健康状况(SOH)方面的应用。文章阐述了 TL 在解决数据稀缺和领域差异以提高预测准确性方面的关键作用。综述总结了利用 EIS 数据进行 TL 分析的最新进展,详细介绍了从实验数据来源到特征提取、准确度指标和性能分析的方法。文章最后预测了利用 TL 进行更精确的锂电池健康诊断和生命周期预测的潜在研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
Recycling methods for spent lithium iron phosphate cathode materials An updated review on the potential of V₂O₅-based materials for zinc-ion batteries Radical-oxidation coupled phosphate stabilization strategy: an aqueous and scalable route to mesoporous MnPO4∙H2O precursor for high-performance LiMnPO4 cathodes The coupled influence of multiple conditions on the performance and stability characteristics of PEMFCs Enhanced mathematical modeling of PEM fuel cells using the starfish optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1