Molecular signatures that translate across omics layers and crops under high aluminium and low phosphorus stress facilitate the identification of reliable molecular targets for genotyping in lentil
{"title":"Molecular signatures that translate across omics layers and crops under high aluminium and low phosphorus stress facilitate the identification of reliable molecular targets for genotyping in lentil","authors":"Kadiyala Kavya, Noren Singh Konjengbam, M James, Mayank Rai, Wricha Tyagi, Ajay Kumar Mahato","doi":"10.1007/s10142-025-01542-z","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminium toxicity and phosphorus deficiency are co-existing characteristics of low pH stress that significantly affect the grain yield of crops. The increasing acidity of Indian soils potentially limits the cultivable area for lentil (<i>Lens culinaris</i>), the third most widely consumed pulse. Breeding for tolerance requires an understanding of interdependent biological responses, but the molecular characterization of integrated tolerance remains elusive. Therefore, this study aimed to integrate high aluminium and low phosphorus stress responsive associations across the genomics, transcriptomics, proteomics, and metabolomics of multiple crop species. The overlapping molecular signatures were fine mapped to 23 candidates that serve multiple regulatory roles crucial for cellular homeostasis. Most of these genes have not been adequately discussed in the context of soil acidity tolerance. Thus, a multi-omics guided regulatory framework was developed to provide new insights into tolerance mechanisms. In silico genotyping of 29 lentil genotypes across 588 genes related to transomics loci yielded seven nonsynonymous and three synonymous variants likely associated with their differential response to stress. The results suggest comprehensive genotyping of multi-omics specific targets to identify potential candidates for marker-trait association studies. In conclusion, data-driven exploratory analysis of multi-omics variants highlights potential biomarkers as targets for genetically improving complex biological traits.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01542-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminium toxicity and phosphorus deficiency are co-existing characteristics of low pH stress that significantly affect the grain yield of crops. The increasing acidity of Indian soils potentially limits the cultivable area for lentil (Lens culinaris), the third most widely consumed pulse. Breeding for tolerance requires an understanding of interdependent biological responses, but the molecular characterization of integrated tolerance remains elusive. Therefore, this study aimed to integrate high aluminium and low phosphorus stress responsive associations across the genomics, transcriptomics, proteomics, and metabolomics of multiple crop species. The overlapping molecular signatures were fine mapped to 23 candidates that serve multiple regulatory roles crucial for cellular homeostasis. Most of these genes have not been adequately discussed in the context of soil acidity tolerance. Thus, a multi-omics guided regulatory framework was developed to provide new insights into tolerance mechanisms. In silico genotyping of 29 lentil genotypes across 588 genes related to transomics loci yielded seven nonsynonymous and three synonymous variants likely associated with their differential response to stress. The results suggest comprehensive genotyping of multi-omics specific targets to identify potential candidates for marker-trait association studies. In conclusion, data-driven exploratory analysis of multi-omics variants highlights potential biomarkers as targets for genetically improving complex biological traits.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?