Molecular signatures that translate across omics layers and crops under high aluminium and low phosphorus stress facilitate the identification of reliable molecular targets for genotyping in lentil

IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Functional & Integrative Genomics Pub Date : 2025-03-05 DOI:10.1007/s10142-025-01542-z
Kadiyala Kavya, Noren Singh Konjengbam, M James, Mayank Rai, Wricha Tyagi, Ajay Kumar Mahato
{"title":"Molecular signatures that translate across omics layers and crops under high aluminium and low phosphorus stress facilitate the identification of reliable molecular targets for genotyping in lentil","authors":"Kadiyala Kavya,&nbsp;Noren Singh Konjengbam,&nbsp;M James,&nbsp;Mayank Rai,&nbsp;Wricha Tyagi,&nbsp;Ajay Kumar Mahato","doi":"10.1007/s10142-025-01542-z","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminium toxicity and phosphorus deficiency are co-existing characteristics of low pH stress that significantly affect the grain yield of crops. The increasing acidity of Indian soils potentially limits the cultivable area for lentil (<i>Lens culinaris</i>), the third most widely consumed pulse. Breeding for tolerance requires an understanding of interdependent biological responses, but the molecular characterization of integrated tolerance remains elusive. Therefore, this study aimed to integrate high aluminium and low phosphorus stress responsive associations across the genomics, transcriptomics, proteomics, and metabolomics of multiple crop species. The overlapping molecular signatures were fine mapped to 23 candidates that serve multiple regulatory roles crucial for cellular homeostasis. Most of these genes have not been adequately discussed in the context of soil acidity tolerance. Thus, a multi-omics guided regulatory framework was developed to provide new insights into tolerance mechanisms. In silico genotyping of 29 lentil genotypes across 588 genes related to transomics loci yielded seven nonsynonymous and three synonymous variants likely associated with their differential response to stress. The results suggest comprehensive genotyping of multi-omics specific targets to identify potential candidates for marker-trait association studies. In conclusion, data-driven exploratory analysis of multi-omics variants highlights potential biomarkers as targets for genetically improving complex biological traits.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01542-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminium toxicity and phosphorus deficiency are co-existing characteristics of low pH stress that significantly affect the grain yield of crops. The increasing acidity of Indian soils potentially limits the cultivable area for lentil (Lens culinaris), the third most widely consumed pulse. Breeding for tolerance requires an understanding of interdependent biological responses, but the molecular characterization of integrated tolerance remains elusive. Therefore, this study aimed to integrate high aluminium and low phosphorus stress responsive associations across the genomics, transcriptomics, proteomics, and metabolomics of multiple crop species. The overlapping molecular signatures were fine mapped to 23 candidates that serve multiple regulatory roles crucial for cellular homeostasis. Most of these genes have not been adequately discussed in the context of soil acidity tolerance. Thus, a multi-omics guided regulatory framework was developed to provide new insights into tolerance mechanisms. In silico genotyping of 29 lentil genotypes across 588 genes related to transomics loci yielded seven nonsynonymous and three synonymous variants likely associated with their differential response to stress. The results suggest comprehensive genotyping of multi-omics specific targets to identify potential candidates for marker-trait association studies. In conclusion, data-driven exploratory analysis of multi-omics variants highlights potential biomarkers as targets for genetically improving complex biological traits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
3.40%
发文量
92
审稿时长
2 months
期刊介绍: Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?
期刊最新文献
Transcriptome analysis of the hypothalamus and testes in Brandt’s Vole: new insights into mechanisms of photoperiodic plasticity in postnatal testicular development Transcriptomic profiling reveals mechanism, therapeutic potential, and prognostic value of cancer stemness characteristic in nasopharyngeal carcinoma Pan-cancer investigation regarding the prognostic predictive and immunological regulation functions of PGK1 and experimental validation in esophageal squamous cell carcinoma Polycomb repressive complex 2 (PRC2) pathway’s role in cancer cell plasticity and drug resistance Molecular signatures that translate across omics layers and crops under high aluminium and low phosphorus stress facilitate the identification of reliable molecular targets for genotyping in lentil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1