Experimental evaluation of divergent parallel flow field effect on the proton exchange membrane fuel cell performance

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2025-01-29 DOI:10.1007/s11581-025-06108-4
Muralikrishna Boni, Venkateswarlu Velisala, Mamidi Adarsh Kumar, Kanumareddy Balu, Amarnath Gundalabhagavan
{"title":"Experimental evaluation of divergent parallel flow field effect on the proton exchange membrane fuel cell performance","authors":"Muralikrishna Boni,&nbsp;Venkateswarlu Velisala,&nbsp;Mamidi Adarsh Kumar,&nbsp;Kanumareddy Balu,&nbsp;Amarnath Gundalabhagavan","doi":"10.1007/s11581-025-06108-4","DOIUrl":null,"url":null,"abstract":"<div><p>Proton exchange membrane fuel cells (PEMFCs) are promising for clean energy generation, where the design of the flow channels is crucial for uniform reactant distribution on the catalyst surface. This study involves designing a divergent parallel flow field and comparing its performance with a single serpentine flow channel. The findings indicate that the divergent parallel flow field enhances peak power density by 23% compared to the serpentine flow field under same operating conditions. A parametric study was conducted on the divergent parallel flow channel, varying cell temperature, anode humidification temperature (AHT), cathode humidification temperature (CHT), anode flow rate (AFR), cathode flow rate (CFR), and operating pressure (OP). The optimized conditions found are a cell operating temperature (COT) of 70 °C, AHT of 70 °C, CHT of 60 °C, AFR of 300 sccm, CFR of 350 sccm, and OP of 3 bar. The PEMFC delivered a MPD of 0.5408 W·cm<sup>2</sup> at these optimized conditions. The results show the potential of the divergent parallel flow field design for greatly improved PEMFC performance.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 3","pages":"2657 - 2670"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06108-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Proton exchange membrane fuel cells (PEMFCs) are promising for clean energy generation, where the design of the flow channels is crucial for uniform reactant distribution on the catalyst surface. This study involves designing a divergent parallel flow field and comparing its performance with a single serpentine flow channel. The findings indicate that the divergent parallel flow field enhances peak power density by 23% compared to the serpentine flow field under same operating conditions. A parametric study was conducted on the divergent parallel flow channel, varying cell temperature, anode humidification temperature (AHT), cathode humidification temperature (CHT), anode flow rate (AFR), cathode flow rate (CFR), and operating pressure (OP). The optimized conditions found are a cell operating temperature (COT) of 70 °C, AHT of 70 °C, CHT of 60 °C, AFR of 300 sccm, CFR of 350 sccm, and OP of 3 bar. The PEMFC delivered a MPD of 0.5408 W·cm2 at these optimized conditions. The results show the potential of the divergent parallel flow field design for greatly improved PEMFC performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子交换膜燃料电池(PEMFCs)在清洁能源发电方面大有可为,而流道的设计对于反应物在催化剂表面的均匀分布至关重要。本研究涉及设计一个发散平行流场,并将其性能与单一蛇形流道进行比较。研究结果表明,在相同的操作条件下,发散平行流场比蛇形流场的峰值功率密度提高了 23%。对发散平行流道进行了参数研究,改变了电池温度、阳极加湿温度(AHT)、阴极加湿温度(CHT)、阳极流速(AFR)、阴极流速(CFR)和工作压力(OP)。优化条件为电池工作温度 (COT) 70 °C、AHT 70 °C、CHT 60 °C、AFR 300 sccm、CFR 350 sccm 和 OP 3 bar。在这些优化条件下,PEMFC 的 MPD 为 0.5408 W-cm2。结果表明,发散平行流场设计具有极大改善 PEMFC 性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
Anthraquinone doped CoNi-MOF-74 composites as electrocatalysts for enhanced oxygen evolution reaction Bio-waste-derived one-step carbonized hierarchical structured carbon/cobalt oxide composite for energy storage application Dye-sensitized solar cells utilizing aurum-palladium bimetal film counter electrode Titanium oxide covers graphite felt as negative electrode for vanadium redox flow battery by liquid phase deposition Efficient hydrogen production via NaBH4 methanolysis enhanced by bismuth terephthalic acid metal–organic framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1