Study of the effect of fiber diameter gradient distribution on water transport in the gas diffusion layer of proton exchange membrane fuel cells

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2025-01-18 DOI:10.1007/s11581-025-06086-7
Jiadong Liao, Xiaobin Guo, Zhiya Zhang, Tao Li, Xianhui Nie, Ziheng Jiang, Miao Yang
{"title":"Study of the effect of fiber diameter gradient distribution on water transport in the gas diffusion layer of proton exchange membrane fuel cells","authors":"Jiadong Liao,&nbsp;Xiaobin Guo,&nbsp;Zhiya Zhang,&nbsp;Tao Li,&nbsp;Xianhui Nie,&nbsp;Ziheng Jiang,&nbsp;Miao Yang","doi":"10.1007/s11581-025-06086-7","DOIUrl":null,"url":null,"abstract":"<div><p>Improving water management in the gas diffusion layer (GDL) during operation and shutdown purging can effectively improve the performance and lifetime of proton exchange membrane fuel cells (PEMFCs). The water intrusion and water removal processes in the GDL are linked as the whole water transport process, and the lattice Boltzmann method is used to investigate the dynamic behavior of liquid water during the whole water transport process in the GDL with different fiber diameter gradient distributions at the pore scale. It is found that the structure with 6–7-8-μm gradient distribution of fiber diameters significantly reduces the number of water clusters and increases the transport path of water through the GDL during water intrusion, and reduces the water saturation within the GDL by 7.519% compared with the case of uniform distribution of fiber diameters. After the completion of purging, the remaining water saturation is the smallest at 0.036 for the structure with the 6–7-8-μm gradient distribution of fiber diameters. Overall, the structure with the 6–7-8-μm gradient distribution of fiber diameters has the smallest water saturation in both the water intrusion process and the purging process, and can effectively improve the water management of the GDL.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 3","pages":"2623 - 2635"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06086-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Improving water management in the gas diffusion layer (GDL) during operation and shutdown purging can effectively improve the performance and lifetime of proton exchange membrane fuel cells (PEMFCs). The water intrusion and water removal processes in the GDL are linked as the whole water transport process, and the lattice Boltzmann method is used to investigate the dynamic behavior of liquid water during the whole water transport process in the GDL with different fiber diameter gradient distributions at the pore scale. It is found that the structure with 6–7-8-μm gradient distribution of fiber diameters significantly reduces the number of water clusters and increases the transport path of water through the GDL during water intrusion, and reduces the water saturation within the GDL by 7.519% compared with the case of uniform distribution of fiber diameters. After the completion of purging, the remaining water saturation is the smallest at 0.036 for the structure with the 6–7-8-μm gradient distribution of fiber diameters. Overall, the structure with the 6–7-8-μm gradient distribution of fiber diameters has the smallest water saturation in both the water intrusion process and the purging process, and can effectively improve the water management of the GDL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子交换膜燃料电池气体扩散层中纤维直径梯度分布对水输运影响的研究
在运行和停机净化过程中,改善气体扩散层(GDL)的水管理可以有效提高质子交换膜燃料电池(pemfc)的性能和寿命。将GDL中的入水和脱水过程作为整个输水过程联系起来,采用晶格玻尔兹曼方法在孔隙尺度上研究了不同纤维直径梯度分布的GDL中液态水在整个输水过程中的动态行为。研究发现,与纤维直径均匀分布的结构相比,6-7-8 μm梯度分布的结构显著减少了水团的数量,增加了水在水侵过程中通过GDL的输运路径,使GDL内的含水饱和度降低了7.519%。吹扫完成后,纤维直径梯度分布为6-7-8 μm的结构剩余水饱和度最小,为0.036。综上所述,纤维直径呈6-7-8 μm梯度分布的结构在水侵过程和吹扫过程中含水饱和度最小,可以有效改善GDL的水管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
Recycling methods for spent lithium iron phosphate cathode materials An updated review on the potential of V₂O₅-based materials for zinc-ion batteries Radical-oxidation coupled phosphate stabilization strategy: an aqueous and scalable route to mesoporous MnPO4∙H2O precursor for high-performance LiMnPO4 cathodes The coupled influence of multiple conditions on the performance and stability characteristics of PEMFCs Enhanced mathematical modeling of PEM fuel cells using the starfish optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1