Determining the Multiplicities of Muons in DECOR Events by Means of Deep Machine Learning

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Physics of Atomic Nuclei Pub Date : 2025-03-05 DOI:10.1134/S1063778824100326
E. A. Miroshnichenko, V. S. Vorobev
{"title":"Determining the Multiplicities of Muons in DECOR Events by Means of Deep Machine Learning","authors":"E. A. Miroshnichenko,&nbsp;V. S. Vorobev","doi":"10.1134/S1063778824100326","DOIUrl":null,"url":null,"abstract":"<p>The DECOR coordinate-tracking detector is designed to register charged cosmic ray particles in wide zenith angles. Measurements by the installation are currently analyzed manually, affecting its performance. The use of deep machine learning allows automated processing and larger samples of processed data. The artificial neural network (ANN) architectures considered in this work have displayed high accuracy in counting the multiplicity of muons in data from the DECOR facility. Estimates are given of ANN performance for events with different muon multiplicities. The accuracy is 1 track for 5–6 particles and 7 tracks for more than 100 particles.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"87 12","pages":"1830 - 1835"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Atomic Nuclei","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063778824100326","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The DECOR coordinate-tracking detector is designed to register charged cosmic ray particles in wide zenith angles. Measurements by the installation are currently analyzed manually, affecting its performance. The use of deep machine learning allows automated processing and larger samples of processed data. The artificial neural network (ANN) architectures considered in this work have displayed high accuracy in counting the multiplicity of muons in data from the DECOR facility. Estimates are given of ANN performance for events with different muon multiplicities. The accuracy is 1 track for 5–6 particles and 7 tracks for more than 100 particles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度机器学习确定装饰事件中μ子的多重性
DECOR坐标跟踪探测器设计用于记录宽天顶角的带电宇宙射线粒子。安装的测量结果目前是手动分析的,这会影响其性能。使用深度机器学习可以实现自动化处理和更大的处理数据样本。本文所考虑的人工神经网络(ANN)架构在计算来自DECOR设备的数据中的μ子的多重性方面显示出很高的准确性。对具有不同介子多重度事件的人工神经网络性能进行了估计。5-6个粒子精度为1道,100个以上粒子精度为7道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Atomic Nuclei
Physics of Atomic Nuclei 物理-物理:核物理
CiteScore
0.60
自引率
25.00%
发文量
56
审稿时长
3-6 weeks
期刊介绍: Physics of Atomic Nuclei is a journal that covers experimental and theoretical studies of nuclear physics: nuclear structure, spectra, and properties; radiation, fission, and nuclear reactions induced by photons, leptons, hadrons, and nuclei; fundamental interactions and symmetries; hadrons (with light, strange, charm, and bottom quarks); particle collisions at high and superhigh energies; gauge and unified quantum field theories, quark models, supersymmetry and supergravity, astrophysics and cosmology.
期刊最新文献
Charged Pion, Kaon and Proton Spectra in Ar \({+}\) Ar Collisions at \({\sqrt{s_{NN}}=11}\) GeV and \({{p}+{p}}\) Collisions at \({\sqrt{s_{NN}}=27}\) GeV in the UrQMD Model Investigation of \({dp}\) Backward Elastic Scattering at GeV-Energies Mechanism of Statistical Nucleosynthesis in Rapidly Expanding Nuclear Matter Benchmark Experiments Using Neutrons Produced by 21.5 MeV Proton Irradiation of a ‘‘Thick’’ Beryllium Target Non-Resonant Higgs Boson Pair Production at the LHC: Status and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1