Grafting anthraquinone on ultrathin C3N4 for selective toluene photooxidation

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-11-11 DOI:10.1007/s40843-024-3105-1
Xiong Wang  (, ), Guang-Hui Chen  (, ), Yang Li  (, ), Sheng Tian  (, ), Bing-Hao Wang  (, ), Biao Hu  (, ), Xing-Sheng Hu  (, ), Chao Peng  (, ), Lang Chen  (, ), Shuang-Feng Yin  (, )
{"title":"Grafting anthraquinone on ultrathin C3N4 for selective toluene photooxidation","authors":"Xiong Wang \n (,&nbsp;),&nbsp;Guang-Hui Chen \n (,&nbsp;),&nbsp;Yang Li \n (,&nbsp;),&nbsp;Sheng Tian \n (,&nbsp;),&nbsp;Bing-Hao Wang \n (,&nbsp;),&nbsp;Biao Hu \n (,&nbsp;),&nbsp;Xing-Sheng Hu \n (,&nbsp;),&nbsp;Chao Peng \n (,&nbsp;),&nbsp;Lang Chen \n (,&nbsp;),&nbsp;Shuang-Feng Yin \n (,&nbsp;)","doi":"10.1007/s40843-024-3105-1","DOIUrl":null,"url":null,"abstract":"<div><p>Anthraquinone (AQ), an effective hydrogen atom transfer catalyst, is limited in photocatalytic applications due to its dimerization. In this study, a simple 3-(3-(dimethylamino) propyl)-1-ethylcarbodiimide hydrochloride/<i>N</i>-hydroxysuccinimide (EDC/HNS) assisted linking strategy was developed to covalently graft AQ–COOH onto C<sub>3</sub>N<sub>4</sub> (CN). Using this method, we successfully synthesized amide-bonded CN–AQ ultrathin nanosheets. The amide covalent bond formed between C<sub>3</sub>N<sub>4</sub> and AQ facilitates efficient electron migration from C<sub>3</sub>N<sub>4</sub> to AQ. As a result, charge carrier recombination is prevented and the hydrogen atom transfer capacity of AQ is enhanced. The CN–AQ photocatalyst exhibits high activity and selectivity with a toluene conversion rate of 10274 (mol g<sup>−1</sup> h<sup>−1</sup> and 85% selectivity for benzaldehyde, which is 31 times and 1.7 times higher than those of pristine C<sub>3</sub>N<sub>4</sub> and AQ–COOH, respectively. Owing to the strong covalent bond in CN–AQ composite, the stability of AQ–COOH was greatly enhanced. This approach provides a new pathway to improve catalytic efficiency and solve the dimerization problem of AQ.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 3","pages":"785 - 794"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3105-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anthraquinone (AQ), an effective hydrogen atom transfer catalyst, is limited in photocatalytic applications due to its dimerization. In this study, a simple 3-(3-(dimethylamino) propyl)-1-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/HNS) assisted linking strategy was developed to covalently graft AQ–COOH onto C3N4 (CN). Using this method, we successfully synthesized amide-bonded CN–AQ ultrathin nanosheets. The amide covalent bond formed between C3N4 and AQ facilitates efficient electron migration from C3N4 to AQ. As a result, charge carrier recombination is prevented and the hydrogen atom transfer capacity of AQ is enhanced. The CN–AQ photocatalyst exhibits high activity and selectivity with a toluene conversion rate of 10274 (mol g−1 h−1 and 85% selectivity for benzaldehyde, which is 31 times and 1.7 times higher than those of pristine C3N4 and AQ–COOH, respectively. Owing to the strong covalent bond in CN–AQ composite, the stability of AQ–COOH was greatly enhanced. This approach provides a new pathway to improve catalytic efficiency and solve the dimerization problem of AQ.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超薄C3N4接枝蒽醌选择性光氧化甲苯
蒽醌(AQ)是一种有效的氢原子转移催化剂,但其二聚性限制了其光催化应用。本研究建立了一种简单的3-(3-(二甲氨基)丙基)-1-乙基碳二亚胺盐酸盐/ n -羟基琥珀酰亚胺(EDC/HNS)辅助连接策略,将AQ-COOH共价接枝到C3N4 (CN)上。利用这种方法,我们成功地合成了酰胺键合的CN-AQ超薄纳米片。C3N4与AQ之间形成酰胺共价键,促进了电子从C3N4向AQ的高效迁移,从而阻止了载流子的重组,增强了AQ的氢原子转移能力。CN-AQ光催化剂对甲苯的转化率为10274 (mol g−1 h−1),对苯甲醛的选择性为85%,分别是原始C3N4和AQ-COOH的31倍和1.7倍。由于CN-AQ复合材料中存在较强的共价键,因此大大增强了AQ-COOH的稳定性。该方法为提高催化效率和解决二聚化问题提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Towards chlorine-tolerant seawater electrolysis: anode electrocatalysts, electrolyte, and system design strategies Exciton tuning and charge steering in donor-acceptor covalent triazine frameworks toward boosted photocatalytic oxidation Electrospun MOFs-based nanofibrous membranes for water and air purification: a review Enhanced hydrogen spillover effect in low-temperature ammonia decomposition via N-coordination and O-vacancy-activated Co/LaxCe1−xAlO3−yNz catalyst Metal-organic frameworks as functional materials for biomedicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1