Heterozygous Missense Variants in the ATPase Phospholipid Transporting 9A Gene, ATP9A, Alter Dendritic Spine Maturation and Cause Dominantly Inherited Nonsyndromic Intellectual Disability
Amélie Cordovado, Yvan Hérenger, Coline Cormier, Estrella López-Martín, Hannah Stamberger, Laurence Faivre, Anne-Sophie Denommé-Pichon, Antonio Vitobello, Hamza Hadj Abdallah, Giulia Barcia, Thomas Courtin, Beatriz Martínez-Delgado, Eva Bermejo-Sánchez, María J. Barrero, Brooklynn Gasser, Stéphane Bezieau, Sébastien Küry, Sarah Weckhuysen, Frédéric Laumonnier, Annick Toutain, Marie-Laure Vuillaume
{"title":"Heterozygous Missense Variants in the ATPase Phospholipid Transporting 9A Gene, ATP9A, Alter Dendritic Spine Maturation and Cause Dominantly Inherited Nonsyndromic Intellectual Disability","authors":"Amélie Cordovado, Yvan Hérenger, Coline Cormier, Estrella López-Martín, Hannah Stamberger, Laurence Faivre, Anne-Sophie Denommé-Pichon, Antonio Vitobello, Hamza Hadj Abdallah, Giulia Barcia, Thomas Courtin, Beatriz Martínez-Delgado, Eva Bermejo-Sánchez, María J. Barrero, Brooklynn Gasser, Stéphane Bezieau, Sébastien Küry, Sarah Weckhuysen, Frédéric Laumonnier, Annick Toutain, Marie-Laure Vuillaume","doi":"10.1155/humu/7085599","DOIUrl":null,"url":null,"abstract":"<p>Intellectual disability is a neurodevelopmental disorder, affecting 2%–3% of the population, with a genetic cause in the majority of cases. <i>ATP9A</i> (Online Mendelian Inheritance in Man (OMIM) <sup>∗</sup>609126, NM_006045.3) has recently been added to the list of candidate genes involved in this disorder with the identification of biallelic truncating variants in patients with a neurodevelopmental disorder. In this study, we propose a novel mode of inheritance for <i>ATP9A</i>-related disorders with the identification of five de novo heterozygous missense variants (p.(Thr393Arg), p.(Glu400Gln), p.(Lys461Glu), p.(Gly552Ala), and p.(His713Asp)), in patients with intellectual disability. In a patient with a similar phenotype, we also identified two truncating variants in <i>ATP9A</i> (p.(Arg145 <sup>∗</sup>), p.(Glu901 <sup>∗</sup>)), adding a novel family to the six already described in the literature with the recessive mode of inheritance. Functional studies were performed to assess the pathogenicity of these variants. Overexpression of four selected missense mutant forms of <i>Atp9a</i> in HeLa cells and in primary neuronal cultures led to a loss of mature dendritic spines. In HeLa cells, the endosomal localization of the protein encoded by three of these missense variants was preserved whereas the fourth remained blocked in the endoplasmic reticulum. To mimic the effect on neuronal morphology and spine density of nonsense variants, small hairpin RNAs (shRNAs) were used. They induced a decreased expression of <i>ATP9A</i>, affecting the neuronal arborization by decreasing the number of dendrites per neuron. Our results therefore demonstrate the pathogenicity of <i>ATP9A</i> heterozygous missense variants and confirm the role of <i>ATP9A</i> in neuronal maturation and in brain wiring during development. They strengthen the association of <i>ATP9A</i> with neurodevelopmental disorders and demonstrate that a double mode of inheritance should be considered for <i>ATP9A</i>-related disorders.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2025 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/7085599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/humu/7085599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Intellectual disability is a neurodevelopmental disorder, affecting 2%–3% of the population, with a genetic cause in the majority of cases. ATP9A (Online Mendelian Inheritance in Man (OMIM) ∗609126, NM_006045.3) has recently been added to the list of candidate genes involved in this disorder with the identification of biallelic truncating variants in patients with a neurodevelopmental disorder. In this study, we propose a novel mode of inheritance for ATP9A-related disorders with the identification of five de novo heterozygous missense variants (p.(Thr393Arg), p.(Glu400Gln), p.(Lys461Glu), p.(Gly552Ala), and p.(His713Asp)), in patients with intellectual disability. In a patient with a similar phenotype, we also identified two truncating variants in ATP9A (p.(Arg145 ∗), p.(Glu901 ∗)), adding a novel family to the six already described in the literature with the recessive mode of inheritance. Functional studies were performed to assess the pathogenicity of these variants. Overexpression of four selected missense mutant forms of Atp9a in HeLa cells and in primary neuronal cultures led to a loss of mature dendritic spines. In HeLa cells, the endosomal localization of the protein encoded by three of these missense variants was preserved whereas the fourth remained blocked in the endoplasmic reticulum. To mimic the effect on neuronal morphology and spine density of nonsense variants, small hairpin RNAs (shRNAs) were used. They induced a decreased expression of ATP9A, affecting the neuronal arborization by decreasing the number of dendrites per neuron. Our results therefore demonstrate the pathogenicity of ATP9A heterozygous missense variants and confirm the role of ATP9A in neuronal maturation and in brain wiring during development. They strengthen the association of ATP9A with neurodevelopmental disorders and demonstrate that a double mode of inheritance should be considered for ATP9A-related disorders.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.