Petrology and Geochemistry of Ophiolitic Pyroxenite in the Eastern Desert of Egypt: Genesis of Ultramafic Cumulates and Implications for Neoproterozoic Supra-Subduction Seafloor Metamorphism

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geochemistry Geophysics Geosystems Pub Date : 2025-03-05 DOI:10.1029/2024GC011686
Hussam A. Selim, Paul D. Asimow, Ayman E. Maurice, Mohamad A. Ismail, Oliver D. Wilner, Nathan F. Dalleska, Moustafa E. Gharib, Safinaz A. A. Mahmoud
{"title":"Petrology and Geochemistry of Ophiolitic Pyroxenite in the Eastern Desert of Egypt: Genesis of Ultramafic Cumulates and Implications for Neoproterozoic Supra-Subduction Seafloor Metamorphism","authors":"Hussam A. Selim,&nbsp;Paul D. Asimow,&nbsp;Ayman E. Maurice,&nbsp;Mohamad A. Ismail,&nbsp;Oliver D. Wilner,&nbsp;Nathan F. Dalleska,&nbsp;Moustafa E. Gharib,&nbsp;Safinaz A. A. Mahmoud","doi":"10.1029/2024GC011686","DOIUrl":null,"url":null,"abstract":"<p>We describe and compare two outcrops of pyroxenite associated with Neoproterozoic ophiolite sequences in the Eastern Desert of Egypt: small masses in the Abu Samuki area of the North Eastern Desert and large belts in the Wadi El-Mireiwa area of the South Eastern Desert. This study presents field observations, petrographic descriptions, and data on mineral and whole-rock compositions as a basis for investigating the tectonic setting, nature, origin, and alteration history of this pyroxenite. Both pyroxenite bodies represent cumulates from the crustal sections of fragmented ophiolites, emplaced by thrusting above metasedimentary rocks and island arc assemblages, and later intruded by granite. Samples from both localities are mainly olivine clinopyroxenite. The compositions of olivine (Fo ∼ 79.7 and 0.13–0.49 wt% NiO), clinopyroxene, and fresh Cr-spinel cores, as well as the low whole rock Mg# (average 87.6 at Abu Samuki and 85.7 at Wadi El-Mireiwa) are all consistent with a cumulate origin for both pyroxenite suites. Moreover, the geochemical data all indicate that both pyroxenite suites are derived from fragments of oceanic lithosphere that developed in a fore-arc supra-subduction zone environment. The differences in mineral chemistry between the two locations suggest that the parental magma at Abu Samuki was low-Ti fore-arc basalt, while that at Wadi El-Mireiwa was a high-Ca boninite. The existence of green spinel, zoisite, Al-amphibole, pumpellyite and Mg-chlorite as secondary minerals in pyroxenite at Abu Samuki can be attributed to alteration and metasomatism by Al-Mg-Ca-bearing hydrothermal fluids. The preservation of deformation features in clinopyroxene and the absence of K-bearing secondary minerals suggest that this alteration was associated with circulation of seawater in fractured oceanic crust during the pre-obduction stage of ophiolite emplacement and not with the post-obduction granitoid intrusion.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011686","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011686","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We describe and compare two outcrops of pyroxenite associated with Neoproterozoic ophiolite sequences in the Eastern Desert of Egypt: small masses in the Abu Samuki area of the North Eastern Desert and large belts in the Wadi El-Mireiwa area of the South Eastern Desert. This study presents field observations, petrographic descriptions, and data on mineral and whole-rock compositions as a basis for investigating the tectonic setting, nature, origin, and alteration history of this pyroxenite. Both pyroxenite bodies represent cumulates from the crustal sections of fragmented ophiolites, emplaced by thrusting above metasedimentary rocks and island arc assemblages, and later intruded by granite. Samples from both localities are mainly olivine clinopyroxenite. The compositions of olivine (Fo ∼ 79.7 and 0.13–0.49 wt% NiO), clinopyroxene, and fresh Cr-spinel cores, as well as the low whole rock Mg# (average 87.6 at Abu Samuki and 85.7 at Wadi El-Mireiwa) are all consistent with a cumulate origin for both pyroxenite suites. Moreover, the geochemical data all indicate that both pyroxenite suites are derived from fragments of oceanic lithosphere that developed in a fore-arc supra-subduction zone environment. The differences in mineral chemistry between the two locations suggest that the parental magma at Abu Samuki was low-Ti fore-arc basalt, while that at Wadi El-Mireiwa was a high-Ca boninite. The existence of green spinel, zoisite, Al-amphibole, pumpellyite and Mg-chlorite as secondary minerals in pyroxenite at Abu Samuki can be attributed to alteration and metasomatism by Al-Mg-Ca-bearing hydrothermal fluids. The preservation of deformation features in clinopyroxene and the absence of K-bearing secondary minerals suggest that this alteration was associated with circulation of seawater in fractured oceanic crust during the pre-obduction stage of ophiolite emplacement and not with the post-obduction granitoid intrusion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
期刊最新文献
A Machine Learning Approach to Single Garnet Geothermometry and Application to Tracing the Fingerprint of Superdeep Diamonds Mantle Dynamics in the Mediterranean and Plate Motion of the Adriatic Microplate: Insights From 3D Thermomechanical Modeling A Novel Approach of Semi-Quantifying Gypsum in Sedimentary Rocks by Visible and Near-Infrared Diffuse Reflectance Spectroscopy Magnetic Recording Fidelity of Basalts Through 3D Nanotomography Water in Eclogite and Pyroxenite Xenoliths From the Bottom 100 km of the Slave Craton (Canada) Mantle Root
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1