Petrology and Geochemistry of Ophiolitic Pyroxenite in the Eastern Desert of Egypt: Genesis of Ultramafic Cumulates and Implications for Neoproterozoic Supra-Subduction Seafloor Metamorphism
Hussam A. Selim, Paul D. Asimow, Ayman E. Maurice, Mohamad A. Ismail, Oliver D. Wilner, Nathan F. Dalleska, Moustafa E. Gharib, Safinaz A. A. Mahmoud
{"title":"Petrology and Geochemistry of Ophiolitic Pyroxenite in the Eastern Desert of Egypt: Genesis of Ultramafic Cumulates and Implications for Neoproterozoic Supra-Subduction Seafloor Metamorphism","authors":"Hussam A. Selim, Paul D. Asimow, Ayman E. Maurice, Mohamad A. Ismail, Oliver D. Wilner, Nathan F. Dalleska, Moustafa E. Gharib, Safinaz A. A. Mahmoud","doi":"10.1029/2024GC011686","DOIUrl":null,"url":null,"abstract":"<p>We describe and compare two outcrops of pyroxenite associated with Neoproterozoic ophiolite sequences in the Eastern Desert of Egypt: small masses in the Abu Samuki area of the North Eastern Desert and large belts in the Wadi El-Mireiwa area of the South Eastern Desert. This study presents field observations, petrographic descriptions, and data on mineral and whole-rock compositions as a basis for investigating the tectonic setting, nature, origin, and alteration history of this pyroxenite. Both pyroxenite bodies represent cumulates from the crustal sections of fragmented ophiolites, emplaced by thrusting above metasedimentary rocks and island arc assemblages, and later intruded by granite. Samples from both localities are mainly olivine clinopyroxenite. The compositions of olivine (Fo ∼ 79.7 and 0.13–0.49 wt% NiO), clinopyroxene, and fresh Cr-spinel cores, as well as the low whole rock Mg# (average 87.6 at Abu Samuki and 85.7 at Wadi El-Mireiwa) are all consistent with a cumulate origin for both pyroxenite suites. Moreover, the geochemical data all indicate that both pyroxenite suites are derived from fragments of oceanic lithosphere that developed in a fore-arc supra-subduction zone environment. The differences in mineral chemistry between the two locations suggest that the parental magma at Abu Samuki was low-Ti fore-arc basalt, while that at Wadi El-Mireiwa was a high-Ca boninite. The existence of green spinel, zoisite, Al-amphibole, pumpellyite and Mg-chlorite as secondary minerals in pyroxenite at Abu Samuki can be attributed to alteration and metasomatism by Al-Mg-Ca-bearing hydrothermal fluids. The preservation of deformation features in clinopyroxene and the absence of K-bearing secondary minerals suggest that this alteration was associated with circulation of seawater in fractured oceanic crust during the pre-obduction stage of ophiolite emplacement and not with the post-obduction granitoid intrusion.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011686","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011686","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We describe and compare two outcrops of pyroxenite associated with Neoproterozoic ophiolite sequences in the Eastern Desert of Egypt: small masses in the Abu Samuki area of the North Eastern Desert and large belts in the Wadi El-Mireiwa area of the South Eastern Desert. This study presents field observations, petrographic descriptions, and data on mineral and whole-rock compositions as a basis for investigating the tectonic setting, nature, origin, and alteration history of this pyroxenite. Both pyroxenite bodies represent cumulates from the crustal sections of fragmented ophiolites, emplaced by thrusting above metasedimentary rocks and island arc assemblages, and later intruded by granite. Samples from both localities are mainly olivine clinopyroxenite. The compositions of olivine (Fo ∼ 79.7 and 0.13–0.49 wt% NiO), clinopyroxene, and fresh Cr-spinel cores, as well as the low whole rock Mg# (average 87.6 at Abu Samuki and 85.7 at Wadi El-Mireiwa) are all consistent with a cumulate origin for both pyroxenite suites. Moreover, the geochemical data all indicate that both pyroxenite suites are derived from fragments of oceanic lithosphere that developed in a fore-arc supra-subduction zone environment. The differences in mineral chemistry between the two locations suggest that the parental magma at Abu Samuki was low-Ti fore-arc basalt, while that at Wadi El-Mireiwa was a high-Ca boninite. The existence of green spinel, zoisite, Al-amphibole, pumpellyite and Mg-chlorite as secondary minerals in pyroxenite at Abu Samuki can be attributed to alteration and metasomatism by Al-Mg-Ca-bearing hydrothermal fluids. The preservation of deformation features in clinopyroxene and the absence of K-bearing secondary minerals suggest that this alteration was associated with circulation of seawater in fractured oceanic crust during the pre-obduction stage of ophiolite emplacement and not with the post-obduction granitoid intrusion.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.