{"title":"Identification of Potent Leucine-Rich Repeat Kinase 2 Inhibitors by Virtual Screening and Biological Evaluation","authors":"Hualiang Shen, Guoqi Yu, Tao Cai, Kai Hu, Tianbo Shang, Yanjuan Luo, Jiawei Zhu, Xiaoxue Bai, Yicheng Xiong, Meiyang Xi, Runpu Shen","doi":"10.1111/cbdd.70082","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Parkinson's disease (PD) is the second most common neurodegenerative disease but has limited medications. Targeting leucine-rich repeat kinase 2 (LRRK2) has been identified as a potential strategy for the treatment of PD. The development of LRRK2 inhibitors has attracted much interest, and various compounds have been reported with significant improvement in preclinical and clinical models. Currently, no LRRK2 inhibitor has been approved for PD intervention. Herein, we reported a virtual screening (VS) workflow combining molecular docking and molecular dynamics (MD) simulations to achieve eight compounds for further enzymatic assay. The results indicated a potent LRRK2 inhibitor <b>2</b> with IC<sub>50</sub> values of 2.396 and 5.996 μM against LRRK2 and LRRK2 G2019S, respectively, implying the reliability of this VS approach. Combined with predicted favorable drug-like properties, this hit can be used as a starting point for further structural optimization, probably offering insight into targeting LRRK2 for PD treatment in the future.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"105 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70082","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease but has limited medications. Targeting leucine-rich repeat kinase 2 (LRRK2) has been identified as a potential strategy for the treatment of PD. The development of LRRK2 inhibitors has attracted much interest, and various compounds have been reported with significant improvement in preclinical and clinical models. Currently, no LRRK2 inhibitor has been approved for PD intervention. Herein, we reported a virtual screening (VS) workflow combining molecular docking and molecular dynamics (MD) simulations to achieve eight compounds for further enzymatic assay. The results indicated a potent LRRK2 inhibitor 2 with IC50 values of 2.396 and 5.996 μM against LRRK2 and LRRK2 G2019S, respectively, implying the reliability of this VS approach. Combined with predicted favorable drug-like properties, this hit can be used as a starting point for further structural optimization, probably offering insight into targeting LRRK2 for PD treatment in the future.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.