Influence of Biofuel Blending on Inorganic Constituent Behavior and Impact in Fluidized-Bed Gasification.

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS Energy & Fuels Pub Date : 2025-02-13 eCollection Date: 2025-02-27 DOI:10.1021/acs.energyfuels.4c05818
Florian Lebendig, Michael Müller
{"title":"Influence of Biofuel Blending on Inorganic Constituent Behavior and Impact in Fluidized-Bed Gasification.","authors":"Florian Lebendig, Michael Müller","doi":"10.1021/acs.energyfuels.4c05818","DOIUrl":null,"url":null,"abstract":"<p><p>A promising technology for producing carbon-neutral fuels is fluidized-bed gasification of biomass. In combination with chemical looping gasification (CLG), the process becomes even more efficient. However, using biomass-based fuels can lead to significant ash-related issues, including bed agglomeration, fouling, deposition, slagging, and high-temperature corrosion. To address these issues, several biomass upgrading approaches are used to improve the quality of the feedstock for gasification. These approaches include torrefaction, water leaching, and blending with different additives. This study focuses on the influence of additives and biomass co-blending with low-cost biofuels on the behavior of inorganic constituents and under gasification-like conditions at 950 °C and the corresponding impact in fluidized-bed gasification. For example, blending (upgraded) barley straw with 2 wt % CaCO<sub>3</sub> resulted in a decrease in slag and a corresponding increase in the proportion of solid oxides. This indicates that thermal stability can be expected at operating temperatures up to 950 °C. Similarly, adding Ca/Si-rich biowaste components increases the ash softening point of herbaceous biofuels. Furthermore, the results show that adding Ca-based or woody biofuel components has a chemical effect on the fate of volatile inorganics. For example, increasing the concentration of calcium in the fuel significantly reduces the release of HCl and partially reduces the release of sulfur species, thus reducing the corrosion risk. These results contribute to the development of more efficient and cleaner biomass gasification processes for producing carbon-neutral fuels.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 8","pages":"3868-3881"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873961/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.energyfuels.4c05818","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A promising technology for producing carbon-neutral fuels is fluidized-bed gasification of biomass. In combination with chemical looping gasification (CLG), the process becomes even more efficient. However, using biomass-based fuels can lead to significant ash-related issues, including bed agglomeration, fouling, deposition, slagging, and high-temperature corrosion. To address these issues, several biomass upgrading approaches are used to improve the quality of the feedstock for gasification. These approaches include torrefaction, water leaching, and blending with different additives. This study focuses on the influence of additives and biomass co-blending with low-cost biofuels on the behavior of inorganic constituents and under gasification-like conditions at 950 °C and the corresponding impact in fluidized-bed gasification. For example, blending (upgraded) barley straw with 2 wt % CaCO3 resulted in a decrease in slag and a corresponding increase in the proportion of solid oxides. This indicates that thermal stability can be expected at operating temperatures up to 950 °C. Similarly, adding Ca/Si-rich biowaste components increases the ash softening point of herbaceous biofuels. Furthermore, the results show that adding Ca-based or woody biofuel components has a chemical effect on the fate of volatile inorganics. For example, increasing the concentration of calcium in the fuel significantly reduces the release of HCl and partially reduces the release of sulfur species, thus reducing the corrosion risk. These results contribute to the development of more efficient and cleaner biomass gasification processes for producing carbon-neutral fuels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead A New Doped Graphene-Based Catalyst for Hydrogen Evolution Reaction Under Low-Electrolyte Concentration and Biomass-Rich Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1