Xuyang Qin, Jingjing Ji, Somya Chakraborty, Shikha Nangia
{"title":"Extending the PARCH Scale: Assessing Hydropathy of Proteins across Multiple Water Models.","authors":"Xuyang Qin, Jingjing Ji, Somya Chakraborty, Shikha Nangia","doi":"10.1021/acs.jcim.4c02415","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative assessment of amino acid hydropathy can be done using the protocol for assigning a residue's character on a hydropathy (PARCH) scale, which assigns values from 0 to 10, with lower values indicating greater hydrophobicity. The merit of the PARCH scale lies in its ability to integrate both the nanoscale topographical features and the chemical properties of amino acid residues when determining hydropathy. In its initial application, we employed the TIP3P water model, optimized for CHARMM36m proteins, to simulate the water behavior around the protein surface. Due to the growing use of the PARCH scale, we have extended its application to three additional all-atom water models: TIP4P, TIP4P-Ew, and TIP5P. Our findings reveal that although PARCH values vary across these water models, the relative hydropathy trends remain consistent. All models successfully distinguished hydrophobic from hydrophilic regions in nanoscale topography, although charged residues showed greater sensitivity to model choice, leading to more significant value variances. Additionally, we evaluated the influence of two other parameters─the force constant used to constrain proteins and the time step of the evaporation process─on the PARCH scale. Overall, the PARCH scale has demonstrated robustness in capturing protein hydropathy across various water models, suggesting its potential applicability with other protein-water force field combinations and even molecular systems beyond proteins.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02415","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative assessment of amino acid hydropathy can be done using the protocol for assigning a residue's character on a hydropathy (PARCH) scale, which assigns values from 0 to 10, with lower values indicating greater hydrophobicity. The merit of the PARCH scale lies in its ability to integrate both the nanoscale topographical features and the chemical properties of amino acid residues when determining hydropathy. In its initial application, we employed the TIP3P water model, optimized for CHARMM36m proteins, to simulate the water behavior around the protein surface. Due to the growing use of the PARCH scale, we have extended its application to three additional all-atom water models: TIP4P, TIP4P-Ew, and TIP5P. Our findings reveal that although PARCH values vary across these water models, the relative hydropathy trends remain consistent. All models successfully distinguished hydrophobic from hydrophilic regions in nanoscale topography, although charged residues showed greater sensitivity to model choice, leading to more significant value variances. Additionally, we evaluated the influence of two other parameters─the force constant used to constrain proteins and the time step of the evaporation process─on the PARCH scale. Overall, the PARCH scale has demonstrated robustness in capturing protein hydropathy across various water models, suggesting its potential applicability with other protein-water force field combinations and even molecular systems beyond proteins.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.