Microbial magnetite oxidation via MtoAB porin-multiheme cytochrome complex in Sideroxydans lithotrophicus ES-1.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-03-05 DOI:10.1128/aem.01865-24
Jessica L Keffer, Nanqing Zhou, Danielle D Rushworth, Yanbao Yu, Clara S Chan
{"title":"Microbial magnetite oxidation via MtoAB porin-multiheme cytochrome complex in <i>Sideroxydans lithotrophicus</i> ES-1.","authors":"Jessica L Keffer, Nanqing Zhou, Danielle D Rushworth, Yanbao Yu, Clara S Chan","doi":"10.1128/aem.01865-24","DOIUrl":null,"url":null,"abstract":"<p><p>Most of Earth's iron is mineral-bound, but it is unclear how and to what extent iron-oxidizing microbes can use solid minerals as electron donors. A prime candidate for studying mineral-oxidizing growth and pathways is <i>Sideroxydans lithotrophicus</i> ES-1, a robust, facultative iron oxidizer with multiple possible iron oxidation mechanisms. These include Cyc2 and Mto pathways plus other multiheme cytochromes and cupredoxins, and so we posit that the mechanisms may correspond to different Fe(II) sources. Here, <i>S. lithotrophicus</i> ES-1 was grown on dissolved Fe(II)-citrate and magnetite. <i>S. lithotrophicus</i> ES-1 oxidized all dissolved Fe<sup>2+</sup> released from magnetite and continued to build biomass when only solid Fe(II) remained, suggesting it can utilize magnetite as a solid electron donor. Quantitative proteomic analyses of <i>S. lithotrophicus</i> ES-1 grown on these substrates revealed global proteome remodeling in response to electron donor and growth state and uncovered potential proteins and metabolic pathways involved in the oxidation of solid magnetite. While the Cyc2 iron oxidases were highly expressed on both dissolved and solid substrates, MtoA was only detected during growth on solid magnetite, suggesting this protein helps catalyze oxidation of solid minerals in <i>S. lithotrophicus</i> ES-1. A set of cupredoxin domain-containing proteins were also specifically expressed during solid iron oxidation. This work demonstrated that the iron oxidizer <i>S. lithotrophicus</i> ES-1 utilized additional extracellular electron transfer pathways when growing on solid mineral electron donors compared to dissolved Fe(II).</p><p><strong>Importance: </strong>Mineral-bound iron could be a vast source of energy to iron-oxidizing bacteria, but there is limited physiological evidence of this metabolism, and it has been unknown whether the mechanisms of solid and dissolved Fe(II) oxidation are distinct. In iron-reducing bacteria, multiheme cytochromes can facilitate iron mineral reduction, and here, we link a multiheme cytochrome-based pathway to mineral oxidation, expanding the known functionality of multiheme cytochromes. Given the growing recognition of microbial oxidation of minerals and cathodes, increasing our understanding of these mechanisms will allow us to recognize and trace the activities of mineral-oxidizing microbes. This work shows how solid iron minerals can promote microbial growth, which, if widespread, could be a major agent of geologic weathering and mineral-fueled nutrient cycling in sediments, aquifers, and rock-hosted environments.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0186524"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01865-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most of Earth's iron is mineral-bound, but it is unclear how and to what extent iron-oxidizing microbes can use solid minerals as electron donors. A prime candidate for studying mineral-oxidizing growth and pathways is Sideroxydans lithotrophicus ES-1, a robust, facultative iron oxidizer with multiple possible iron oxidation mechanisms. These include Cyc2 and Mto pathways plus other multiheme cytochromes and cupredoxins, and so we posit that the mechanisms may correspond to different Fe(II) sources. Here, S. lithotrophicus ES-1 was grown on dissolved Fe(II)-citrate and magnetite. S. lithotrophicus ES-1 oxidized all dissolved Fe2+ released from magnetite and continued to build biomass when only solid Fe(II) remained, suggesting it can utilize magnetite as a solid electron donor. Quantitative proteomic analyses of S. lithotrophicus ES-1 grown on these substrates revealed global proteome remodeling in response to electron donor and growth state and uncovered potential proteins and metabolic pathways involved in the oxidation of solid magnetite. While the Cyc2 iron oxidases were highly expressed on both dissolved and solid substrates, MtoA was only detected during growth on solid magnetite, suggesting this protein helps catalyze oxidation of solid minerals in S. lithotrophicus ES-1. A set of cupredoxin domain-containing proteins were also specifically expressed during solid iron oxidation. This work demonstrated that the iron oxidizer S. lithotrophicus ES-1 utilized additional extracellular electron transfer pathways when growing on solid mineral electron donors compared to dissolved Fe(II).

Importance: Mineral-bound iron could be a vast source of energy to iron-oxidizing bacteria, but there is limited physiological evidence of this metabolism, and it has been unknown whether the mechanisms of solid and dissolved Fe(II) oxidation are distinct. In iron-reducing bacteria, multiheme cytochromes can facilitate iron mineral reduction, and here, we link a multiheme cytochrome-based pathway to mineral oxidation, expanding the known functionality of multiheme cytochromes. Given the growing recognition of microbial oxidation of minerals and cathodes, increasing our understanding of these mechanisms will allow us to recognize and trace the activities of mineral-oxidizing microbes. This work shows how solid iron minerals can promote microbial growth, which, if widespread, could be a major agent of geologic weathering and mineral-fueled nutrient cycling in sediments, aquifers, and rock-hosted environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Comparative analysis of environmental persistence of SARS-CoV-2 variants and seasonal coronaviruses. Deletion of Re-citrate synthase allows for analysis of contributions of tricarboxylic acid cycle directionality to the growth of Heliomicrobium modesticaldum. Effects of post-adulthood environmental hygiene improvement on gut microbiota and immune tolerance in mice. Sulfate assimilation regulates antioxidant defense response of the cyanobacterium Synechococcus elongatus PCC 7942 to high concentrations of carbon dioxide. Computer-directed rational engineering of dioxygenase TcsAB for triclosan biodegradation under cold conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1