Whole genome insights into genetic diversity, introgression, and adaptation of Yunnan indigenous cattle of Southwestern China.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-03-04 DOI:10.1186/s12864-024-11033-3
Xiwen Guan, Weixuan Xiang, Kaixing Qu, Zulfiqar Ahmed, Jianyong Liu, Ming Cai, Jicai Zhang, Ningbo Chen, Chuzhao Lei, Bizhi Huang
{"title":"Whole genome insights into genetic diversity, introgression, and adaptation of Yunnan indigenous cattle of Southwestern China.","authors":"Xiwen Guan, Weixuan Xiang, Kaixing Qu, Zulfiqar Ahmed, Jianyong Liu, Ming Cai, Jicai Zhang, Ningbo Chen, Chuzhao Lei, Bizhi Huang","doi":"10.1186/s12864-024-11033-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Yunnan Province, located in Southwestern China, the intricate geography, variable climate, and abundant vegetation of the region have collectively contributed to shaping the distinctive germplasm characteristics observed in Yunnan indigenous cattle through prolonged domestication. The different breeds of Yunnan cattle exhibit distinct advantageous characteristics and traits, which are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. However, a comprehensive genomic landscape of genetic resources has yet to be delineated.</p><p><strong>Results: </strong>Herein, we employed 140 whole-genome sequencing data from Yunnan indigenous cattle across eight breeds to elucidate their genetic diversity and population structure. Utilizing both uniparental and biparental markers, we elucidated the intricate genetic composition of Yunnan indigenous cattle, which is closely correlated with the geographic environment. A predominant East Asian indicine ancestry which gradually diminishes towards the north. The analysis revealed a high genetic diversity among populations and a low-to-moderate inbreeding coefficient, underscoring the rich genetic reservoir of Yunnan cattle breeds. Additionally, gene flow between Yunnan indicine and wild Bos species in and around Yunnan was verified, highlighting localized introgression from Yunnan Gayal as a critical factor in the successful adaptation of Yunnan indicine cattle to the local hot and humid environments.</p><p><strong>Conclusions: </strong>Our findings established the SNPs database for facilitating resource conservation and selective breeding. Moreover, these valuable insights into the genomic diversity and adaptive history of Yunnan indigenous cattle breeds contribute significantly to our understanding of their evolutionary dynamics and offer a foundation for future genetic improvement and conservation strategies.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"216"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881512/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11033-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Yunnan Province, located in Southwestern China, the intricate geography, variable climate, and abundant vegetation of the region have collectively contributed to shaping the distinctive germplasm characteristics observed in Yunnan indigenous cattle through prolonged domestication. The different breeds of Yunnan cattle exhibit distinct advantageous characteristics and traits, which are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. However, a comprehensive genomic landscape of genetic resources has yet to be delineated.

Results: Herein, we employed 140 whole-genome sequencing data from Yunnan indigenous cattle across eight breeds to elucidate their genetic diversity and population structure. Utilizing both uniparental and biparental markers, we elucidated the intricate genetic composition of Yunnan indigenous cattle, which is closely correlated with the geographic environment. A predominant East Asian indicine ancestry which gradually diminishes towards the north. The analysis revealed a high genetic diversity among populations and a low-to-moderate inbreeding coefficient, underscoring the rich genetic reservoir of Yunnan cattle breeds. Additionally, gene flow between Yunnan indicine and wild Bos species in and around Yunnan was verified, highlighting localized introgression from Yunnan Gayal as a critical factor in the successful adaptation of Yunnan indicine cattle to the local hot and humid environments.

Conclusions: Our findings established the SNPs database for facilitating resource conservation and selective breeding. Moreover, these valuable insights into the genomic diversity and adaptive history of Yunnan indigenous cattle breeds contribute significantly to our understanding of their evolutionary dynamics and offer a foundation for future genetic improvement and conservation strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01. A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development. The case-only design is a powerful approach to detect interactions but should be used with caution. The roles of a MiRNA and its targeted methyltransferase 3 in carotenoid accumulation in adductor muscles of QN orange scallops. Analysis and identification of mitochondria-related genes associated with age-related hearing loss.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1