Auditory Cellular Cooperativity Probed Via Spontaneous Otoacoustic Emissions.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2025-03-03 DOI:10.1016/j.bpj.2025.02.023
Christopher Bergevin, Rebecca E Whiley, Hero Wit, Geoffrey Manley, Pim van Dijk
{"title":"Auditory Cellular Cooperativity Probed Via Spontaneous Otoacoustic Emissions.","authors":"Christopher Bergevin, Rebecca E Whiley, Hero Wit, Geoffrey Manley, Pim van Dijk","doi":"10.1016/j.bpj.2025.02.023","DOIUrl":null,"url":null,"abstract":"<p><p>As a sound pressure detector that uses energy to boost both its sensitivity and selectivity, the inner ear is an active non-equilibrium system. The collective processes of the inner ear that give rise to this exquisite functionality remain poorly understood. One manifestation of the active ear across the animal kingdom is the presence of spontaneous otoacoustic emission (SOAE), idiosyncratic arrays of spectral peaks that can be measured using a sensitive microphone in the ear canal. Current SOAE models attempt to explain how multiple peaks arise, and generally assume a spatially-distributed tonotopic system. However, the nature of the generators, their coupling, and the role of noise (e.g., Brownian motion) are hotly debated, especially given the inner ear morphological diversity across vertebrates. One means of probing these facets of emission generation is studying fluctuations in SOAE peak properties, which produce amplitude (AM) and frequency modulations (FM). These properties are likely related to the presence of noise affecting active cellular generation elements, and the coupling between generators. To better biophysically constrain models, this study characterizes the fluctuations in filtered SOAE peak waveforms, focusing on interrelations within and across peaks. A systematic approach is taken, examining three species that exhibit disparate inner ear morphologies: humans, barn owls, and green anole lizards. To varying degrees across all three groups, SOAE peaks have intra- (IrP) and interpeak (IPP) correlations indicative of interactions between generative elements. Activity from anole lizards, whose auditory sensory organ is relatively much smaller than that of humans or barn owls, showed a much higher incidence of nearest-neighbor IPP correlations. We propose that these data reveal characteristics of SOAE cellular generators acting cooperatively, allowing the ear to function as an optimized detector.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.02.023","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

As a sound pressure detector that uses energy to boost both its sensitivity and selectivity, the inner ear is an active non-equilibrium system. The collective processes of the inner ear that give rise to this exquisite functionality remain poorly understood. One manifestation of the active ear across the animal kingdom is the presence of spontaneous otoacoustic emission (SOAE), idiosyncratic arrays of spectral peaks that can be measured using a sensitive microphone in the ear canal. Current SOAE models attempt to explain how multiple peaks arise, and generally assume a spatially-distributed tonotopic system. However, the nature of the generators, their coupling, and the role of noise (e.g., Brownian motion) are hotly debated, especially given the inner ear morphological diversity across vertebrates. One means of probing these facets of emission generation is studying fluctuations in SOAE peak properties, which produce amplitude (AM) and frequency modulations (FM). These properties are likely related to the presence of noise affecting active cellular generation elements, and the coupling between generators. To better biophysically constrain models, this study characterizes the fluctuations in filtered SOAE peak waveforms, focusing on interrelations within and across peaks. A systematic approach is taken, examining three species that exhibit disparate inner ear morphologies: humans, barn owls, and green anole lizards. To varying degrees across all three groups, SOAE peaks have intra- (IrP) and interpeak (IPP) correlations indicative of interactions between generative elements. Activity from anole lizards, whose auditory sensory organ is relatively much smaller than that of humans or barn owls, showed a much higher incidence of nearest-neighbor IPP correlations. We propose that these data reveal characteristics of SOAE cellular generators acting cooperatively, allowing the ear to function as an optimized detector.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Theory of photosynthetic membrane influence on B800-B850 energy transfer in the LH2 complex. Adhesion-driven vesicle translocation through membrane-covered pores. Quantitative insights into processivity of an Hsp100 protein disaggregase on folded proteins. β-Barrel proteins dictate the effect of core oligosaccharide composition on outer membrane mechanics. Competing addition processes give distinct growth regimes in the assembly of 1D filaments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1