Jun Yang, Yaoyao Lu, Jingjing Yu, Xinhong Cai, Chengzhen Wang, Luchao Lv, Robert A Moran, Xilin Zhao, Zhengyi Hu, Mingzhen Deng, Jian-Hua Liu
{"title":"Comprehensive analysis of Enterobacteriaceae IncX plasmids reveals robust conjugation regulators PrfaH, H-NS, and conjugation-fitness tradeoff.","authors":"Jun Yang, Yaoyao Lu, Jingjing Yu, Xinhong Cai, Chengzhen Wang, Luchao Lv, Robert A Moran, Xilin Zhao, Zhengyi Hu, Mingzhen Deng, Jian-Hua Liu","doi":"10.1038/s42003-025-07782-w","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugative IncX plasmids are vital for spreading clinically significant antibiotic resistance genes. We identified key factors governing the conjugative process of IncX plasmids, the plasmid encoded activator PrfaH and inhibitor H-NS. Deletion of prfaH completely abolishes conjugative transfer, and the PrfaH binding site is an ops-like sequence located downstream of the prfaH promoter. We solved the crystal structure of PrfaH and identified the residues that likely mediate interactions with its target. The IncX3 plasmid-encoded H-NS inhibits conjugation by directly repressing PrfaH expression, while simultaneously enhancing host fitness. This tradeoff between plasmid conjugation and fitness is indispensable for plasmid persistence in nutrient-deprived environments. The presence of PrfaH paralogs in various antibiotic resistance plasmids suggests its fundamental role in regulating plasmid transfer. Our study not only elucidates the regulatory mechanisms behind the horizontal transfer of IncX plasmids but also highlights PrfaH as a potential target for strategies aimed at combating antimicrobial resistance.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"363"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07782-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conjugative IncX plasmids are vital for spreading clinically significant antibiotic resistance genes. We identified key factors governing the conjugative process of IncX plasmids, the plasmid encoded activator PrfaH and inhibitor H-NS. Deletion of prfaH completely abolishes conjugative transfer, and the PrfaH binding site is an ops-like sequence located downstream of the prfaH promoter. We solved the crystal structure of PrfaH and identified the residues that likely mediate interactions with its target. The IncX3 plasmid-encoded H-NS inhibits conjugation by directly repressing PrfaH expression, while simultaneously enhancing host fitness. This tradeoff between plasmid conjugation and fitness is indispensable for plasmid persistence in nutrient-deprived environments. The presence of PrfaH paralogs in various antibiotic resistance plasmids suggests its fundamental role in regulating plasmid transfer. Our study not only elucidates the regulatory mechanisms behind the horizontal transfer of IncX plasmids but also highlights PrfaH as a potential target for strategies aimed at combating antimicrobial resistance.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.