micronuclAI enables automated quantification of micronuclei for assessment of chromosomal instability.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2025-03-04 DOI:10.1038/s42003-025-07796-4
Miguel A Ibarra-Arellano, Lindsay A Caprio, Aroj Hada, Niklas Stotzem, Luke L Cai, Shivem B Shah, Zachary H Walsh, Johannes C Melms, Florian Wünneman, Kresimir Bestak, Ibrahim Mansaray, Benjamin Izar, Denis Schapiro
{"title":"micronuclAI enables automated quantification of micronuclei for assessment of chromosomal instability.","authors":"Miguel A Ibarra-Arellano, Lindsay A Caprio, Aroj Hada, Niklas Stotzem, Luke L Cai, Shivem B Shah, Zachary H Walsh, Johannes C Melms, Florian Wünneman, Kresimir Bestak, Ibrahim Mansaray, Benjamin Izar, Denis Schapiro","doi":"10.1038/s42003-025-07796-4","DOIUrl":null,"url":null,"abstract":"<p><p>Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN may result from chromosome mis-segregation errors and excessive chromatin is frequently packaged in micronuclei (MN), which can be enumerated to quantify CIN. The assessment of CIN remains a predominantly manual and time-consuming task. Here, we present micronuclAI, a pipeline for automated and reliable quantification of MN of varying size and morphology in cells stained only for DNA. micronuclAI can achieve close to human-level performance on various human and murine cancer cell line datasets. The pipeline achieved a Pearson's correlation of 0.9278 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and on several publicly available image datasets where we achieved a Pearson's correlation of 0.9620. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on images that are routinely obtained for research purposes. We release a GUI-implementation for easy access and utilization of the pipeline.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"361"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07796-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN may result from chromosome mis-segregation errors and excessive chromatin is frequently packaged in micronuclei (MN), which can be enumerated to quantify CIN. The assessment of CIN remains a predominantly manual and time-consuming task. Here, we present micronuclAI, a pipeline for automated and reliable quantification of MN of varying size and morphology in cells stained only for DNA. micronuclAI can achieve close to human-level performance on various human and murine cancer cell line datasets. The pipeline achieved a Pearson's correlation of 0.9278 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and on several publicly available image datasets where we achieved a Pearson's correlation of 0.9620. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on images that are routinely obtained for research purposes. We release a GUI-implementation for easy access and utilization of the pipeline.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Genetically-encoded markers for confocal visualization of single dense core vesicles. Metabolic crosstalk between the mitochondrion and the nucleus is essential for Toxoplasma gondii infection. Escherichia Coli K1-colibactin meningitis induces microglial NLRP3/IL-18 exacerbating H3K4me3-synucleinopathy in human inflammatory gut-brain axis. Assessment of polygenic risk score performance in East Asian populations for ten common diseases. LolA and LolB are conserved in Bacteroidota and are crucial for gliding motility and Type IX secretion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1