YEATS2 promotes malignant phenotypes of esophageal squamous cell carcinoma via H3K27ac activated-IL6ST.

IF 4.6 2区 生物学 Q2 CELL BIOLOGY Frontiers in Cell and Developmental Biology Pub Date : 2025-02-18 eCollection Date: 2025-01-01 DOI:10.3389/fcell.2025.1497290
Yuanfang Zhai, Fanyu Zhang, Xiaoyu Shi, Siwei Zou, Xiaoling Hu, Chengyuan Shan, Ling Zhang, Binbin Zou, Xin Yang, Pengzhou Kong, Xiaolong Cheng
{"title":"YEATS2 promotes malignant phenotypes of esophageal squamous cell carcinoma via H3K27ac activated-IL6ST.","authors":"Yuanfang Zhai, Fanyu Zhang, Xiaoyu Shi, Siwei Zou, Xiaoling Hu, Chengyuan Shan, Ling Zhang, Binbin Zou, Xin Yang, Pengzhou Kong, Xiaolong Cheng","doi":"10.3389/fcell.2025.1497290","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Histone acetylation modifications can regulate gene transcription and play crucial roles in multiple tumorigeneses processes. YEATS domain proteins are one important type of acetylation readers. We have found significant mutations and copy number amplifications of YEATS domain containing 2 (YEATS2) gene in esophageal squamous cell carcinoma (ESCC) through whole genome sequencing (WGS). However, the function and molecular mechanism of YEATS2 in ESCC remain elusive.</p><p><strong>Methods: </strong>Chi-squared test and Kaplan-Meier methods were used to analyze the clinical significance of YEATS2. MTT, Colony Formation Assay, Transwell, Scratch Wound Healing, subcutaneous tumorigenesis model and lung metastatic tumor model were performed to detect YEATS2 effect on the proliferation and migration ability of ESCC cells <i>in vivo</i> and <i>in vitro</i> Co-IP-based mass spectrum (MS) assays and Chromatin immunoprecipitation (ChIP) were performed to explore the molecular mechanism of YEATS2 function in ESCC.</p><p><strong>Results: </strong>ESCC patients with copy number amplification of YEATS2 had shorter postoperative survival. Furthermore, YEATS2 expression was positively correlated with copy number amplification. We have also found that YEATS2 expression was significantly upregulated in ESCC tissues and was correlated closely with the differentiation degree of ESCC cells. The results of in vivo and in vitro experiments revealed that YEATS2 enhanced the abilities of ESCC cells to proliferate and migrate. Mechanistically, YEATS2 activated NF-κB signaling to promote ESCC progression. YEATS2 and H3K27 acetylation (H3K27ac) were both enriched in the promoter region of IL6ST, which is involved in the regulation of YEATS2 on NF-κB signaling. Additionally, YEATS2 could recruit TAF15 and KAT5 to enhance H3K27ac enrichment in the promoter region of IL6ST to regulate its expression.</p><p><strong>Conclusion: </strong>In conclusion, YEATS2 might function as a potential driver gene and a potential therapeutic target in ESCC.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1497290"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1497290","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Histone acetylation modifications can regulate gene transcription and play crucial roles in multiple tumorigeneses processes. YEATS domain proteins are one important type of acetylation readers. We have found significant mutations and copy number amplifications of YEATS domain containing 2 (YEATS2) gene in esophageal squamous cell carcinoma (ESCC) through whole genome sequencing (WGS). However, the function and molecular mechanism of YEATS2 in ESCC remain elusive.

Methods: Chi-squared test and Kaplan-Meier methods were used to analyze the clinical significance of YEATS2. MTT, Colony Formation Assay, Transwell, Scratch Wound Healing, subcutaneous tumorigenesis model and lung metastatic tumor model were performed to detect YEATS2 effect on the proliferation and migration ability of ESCC cells in vivo and in vitro Co-IP-based mass spectrum (MS) assays and Chromatin immunoprecipitation (ChIP) were performed to explore the molecular mechanism of YEATS2 function in ESCC.

Results: ESCC patients with copy number amplification of YEATS2 had shorter postoperative survival. Furthermore, YEATS2 expression was positively correlated with copy number amplification. We have also found that YEATS2 expression was significantly upregulated in ESCC tissues and was correlated closely with the differentiation degree of ESCC cells. The results of in vivo and in vitro experiments revealed that YEATS2 enhanced the abilities of ESCC cells to proliferate and migrate. Mechanistically, YEATS2 activated NF-κB signaling to promote ESCC progression. YEATS2 and H3K27 acetylation (H3K27ac) were both enriched in the promoter region of IL6ST, which is involved in the regulation of YEATS2 on NF-κB signaling. Additionally, YEATS2 could recruit TAF15 and KAT5 to enhance H3K27ac enrichment in the promoter region of IL6ST to regulate its expression.

Conclusion: In conclusion, YEATS2 might function as a potential driver gene and a potential therapeutic target in ESCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Cell and Developmental Biology
Frontiers in Cell and Developmental Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
9.70
自引率
3.60%
发文量
2531
审稿时长
12 weeks
期刊介绍: Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board. The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology. With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.
期刊最新文献
Molecular puzzle of insulin: structural assembly pathways and their role in diabetes. NK cells in renal cell carcinoma and its implications for CAR-NK therapy. Involvement of SIRT1-mediated aging in liver diseases. Defining bovine CpG epigenetic diversity by analyzing RRBS data from sperm of Montbéliarde and Holstein bulls. Evidence for Fgf and Wnt regulation of Lhx2 during limb development via two limb-specific Lhx2-associated cis-regulatory modules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1