Tianchi Lu, Xueying Wang, Wan Nie, Miaozhe Huo, Shuaicheng Li
{"title":"TransHLA: a Hybrid Transformer model for HLA-presented epitope detection.","authors":"Tianchi Lu, Xueying Wang, Wan Nie, Miaozhe Huo, Shuaicheng Li","doi":"10.1093/gigascience/giaf008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precise prediction of epitope presentation on human leukocyte antigen (HLA) molecules is crucial for advancing vaccine development and immunotherapy. Conventional HLA-peptide binding affinity prediction tools often focus on specific alleles and lack a universal approach for comprehensive HLA site analysis. This limitation hinders efficient filtering of invalid peptide segments.</p><p><strong>Results: </strong>We introduce TransHLA, a pioneering tool designed for epitope prediction across all HLA alleles, integrating Transformer and Residue CNN architectures. TransHLA utilizes the ESM2 large language model for sequence and structure embeddings, achieving high predictive accuracy. For HLA class I, it reaches an accuracy of 84.72% and an area under the curve (AUC) of 91.95% on IEDB test data. For HLA class II, it achieves 79.94% accuracy and an AUC of 88.14%. Our case studies using datasets like CEDAR and VDJdb demonstrate that TransHLA surpasses existing models in specificity and sensitivity for identifying immunogenic epitopes and neoepitopes.</p><p><strong>Conclusions: </strong>TransHLA significantly enhances vaccine design and immunotherapy by efficiently identifying broadly reactive peptides. Our resources, including data and code, are publicly accessible at https://github.com/SkywalkerLuke/TransHLA.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Precise prediction of epitope presentation on human leukocyte antigen (HLA) molecules is crucial for advancing vaccine development and immunotherapy. Conventional HLA-peptide binding affinity prediction tools often focus on specific alleles and lack a universal approach for comprehensive HLA site analysis. This limitation hinders efficient filtering of invalid peptide segments.
Results: We introduce TransHLA, a pioneering tool designed for epitope prediction across all HLA alleles, integrating Transformer and Residue CNN architectures. TransHLA utilizes the ESM2 large language model for sequence and structure embeddings, achieving high predictive accuracy. For HLA class I, it reaches an accuracy of 84.72% and an area under the curve (AUC) of 91.95% on IEDB test data. For HLA class II, it achieves 79.94% accuracy and an AUC of 88.14%. Our case studies using datasets like CEDAR and VDJdb demonstrate that TransHLA surpasses existing models in specificity and sensitivity for identifying immunogenic epitopes and neoepitopes.
Conclusions: TransHLA significantly enhances vaccine design and immunotherapy by efficiently identifying broadly reactive peptides. Our resources, including data and code, are publicly accessible at https://github.com/SkywalkerLuke/TransHLA.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.