Boosting effect of high-dose influenza vaccination on innate immunity among elderly: a randomized-control trial.

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL JCI insight Pub Date : 2025-03-04 DOI:10.1172/jci.insight.184128
Olivia Bonduelle, Tristan Delory, Isabelle Franco Moscardini, Marion Ghidi, Selma Bennacer, Michele Wokam, Mathieu Lenormand, Melissa Petrier, Olivier Rogeaux, Simon de Bernard, Karine Alves, Julien Nourikyan, Bruno Lina, Behazine Combadiere, Cécile Janssen
{"title":"Boosting effect of high-dose influenza vaccination on innate immunity among elderly: a randomized-control trial.","authors":"Olivia Bonduelle, Tristan Delory, Isabelle Franco Moscardini, Marion Ghidi, Selma Bennacer, Michele Wokam, Mathieu Lenormand, Melissa Petrier, Olivier Rogeaux, Simon de Bernard, Karine Alves, Julien Nourikyan, Bruno Lina, Behazine Combadiere, Cécile Janssen","doi":"10.1172/jci.insight.184128","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The high-dose quadrivalent influenza vaccine (QIV-HD) showed superior efficacy against laboratory-confirmed illness than the standard-dose quadrivalent influenza vaccine (QIV-SD) in randomized-controlled trials with elderly. However, specific underlying mechanism remains unclear.</p><p><strong>Methods: </strong>This Phase-IV randomized control trial compared early innate responses induced by QIV-HD and QIV-SD in 59 subjects aged >65 years. Systemic innate cells and gene signatures at Day (D) 0 and D1, hemagglutinin inhibition antibody (HIA) titers at D0 and D21 post-vaccination were assessed.</p><p><strong>Results: </strong>QIV-HD elicited robust humoral response with significantly higher antibody titers and seroconversion rates than QIV-SD. At D1 post-vaccination, QIV-HD recipients showed significant reduction in innate cells, including conventional dendritic cells and natural killer cells than QIV-SD, correlating with significantly increased HIA titers at D21. Blood transcriptomic analysis revealed greater amplitude of gene expression in QIV-HD arm, encompassing genes related to innate immune response, interferons, and antigen processing and presentation and correlated with humoral responses. Interestingly, comparative analysis with a literature dataset from young adults vaccinated with influenza standard-dose vaccine highlighted strong similarities in gene expression patterns and biological pathways with the elderly vaccinated with QIV-HD.</p><p><strong>Conclusion: </strong>QIV-HD induces higher HIA titers than QIV-SD, a youthful boost of the innate gene expression significantly associated with high HIA titers.</p><p><strong>Trial registration: </strong>EudraCT Number: 2021-004573-32.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.184128","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The high-dose quadrivalent influenza vaccine (QIV-HD) showed superior efficacy against laboratory-confirmed illness than the standard-dose quadrivalent influenza vaccine (QIV-SD) in randomized-controlled trials with elderly. However, specific underlying mechanism remains unclear.

Methods: This Phase-IV randomized control trial compared early innate responses induced by QIV-HD and QIV-SD in 59 subjects aged >65 years. Systemic innate cells and gene signatures at Day (D) 0 and D1, hemagglutinin inhibition antibody (HIA) titers at D0 and D21 post-vaccination were assessed.

Results: QIV-HD elicited robust humoral response with significantly higher antibody titers and seroconversion rates than QIV-SD. At D1 post-vaccination, QIV-HD recipients showed significant reduction in innate cells, including conventional dendritic cells and natural killer cells than QIV-SD, correlating with significantly increased HIA titers at D21. Blood transcriptomic analysis revealed greater amplitude of gene expression in QIV-HD arm, encompassing genes related to innate immune response, interferons, and antigen processing and presentation and correlated with humoral responses. Interestingly, comparative analysis with a literature dataset from young adults vaccinated with influenza standard-dose vaccine highlighted strong similarities in gene expression patterns and biological pathways with the elderly vaccinated with QIV-HD.

Conclusion: QIV-HD induces higher HIA titers than QIV-SD, a youthful boost of the innate gene expression significantly associated with high HIA titers.

Trial registration: EudraCT Number: 2021-004573-32.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
期刊最新文献
Combination treatment with anti-RANKL and antibiotics for preventing joint destruction in septic arthritis. Tape strip expression profiling of juvenile dermatomyositis skin reveals mitochondrial dysfunction contributing to disease endotype. Anoctamin5 deficiency enhances ATG9A-dependent autophagy, inducing osteogenesis and gnathodiaphyseal dysplasia-like bone formation. Chronic pancreatitis in T7C140S mice with misfolding cationic trypsinogen mutant. Neurofilament accumulation disrupts autophagy in giant axonal neuropathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1