Xuelong Hu, Yixuan Ma, Jiening Zhang, Jiujun Zhang, Ali Yeganeh, Sandile Charles Shongwe
{"title":"The efficiency of CUSUM schemes for monitoring the multivariate coefficient of variation in short runs process.","authors":"Xuelong Hu, Yixuan Ma, Jiening Zhang, Jiujun Zhang, Ali Yeganeh, Sandile Charles Shongwe","doi":"10.1080/02664763.2024.2405111","DOIUrl":null,"url":null,"abstract":"<p><p>Current monitoring technologies emphasize and address the issue of monitoring high-volume production processes. The high flexibility and diversity of current industrial production processes make monitoring technology for small batch processes even more important. In multivariate process monitoring, a broader applicability exists in multivariate coefficients of variation (MCV) based monitoring schemes due to the lower restriction of the process. In view of the effectiveness of MCV monitoring and with the aim to achieve further performance improvement of current MCV monitoring schemes in a finite horizon production, we additionally introduce two one-sided cumulative sum (CUSUM) MCV schemes. In the case of deterministic and random shifts, the design parameters of the proposed schemes are obtained via an optimization procedure designed by the Markov chain method and the corresponding performance is analysed based on different run length (RL) characteristics, including the mean and the standard deviation. Simulation comparisons with existing exponentially weighted moving average (EWMA) MCV schemes show that the proposed CUSUM MCV schemes are more efficient in monitoring most of the shifts, including the deterministic and random shifts. Finally, to demonstrate the benefits of the new monitoring schemes, a comprehensive case study on monitoring a steel sleeve manufacturing process is conducted.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 4","pages":"966-992"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2405111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Current monitoring technologies emphasize and address the issue of monitoring high-volume production processes. The high flexibility and diversity of current industrial production processes make monitoring technology for small batch processes even more important. In multivariate process monitoring, a broader applicability exists in multivariate coefficients of variation (MCV) based monitoring schemes due to the lower restriction of the process. In view of the effectiveness of MCV monitoring and with the aim to achieve further performance improvement of current MCV monitoring schemes in a finite horizon production, we additionally introduce two one-sided cumulative sum (CUSUM) MCV schemes. In the case of deterministic and random shifts, the design parameters of the proposed schemes are obtained via an optimization procedure designed by the Markov chain method and the corresponding performance is analysed based on different run length (RL) characteristics, including the mean and the standard deviation. Simulation comparisons with existing exponentially weighted moving average (EWMA) MCV schemes show that the proposed CUSUM MCV schemes are more efficient in monitoring most of the shifts, including the deterministic and random shifts. Finally, to demonstrate the benefits of the new monitoring schemes, a comprehensive case study on monitoring a steel sleeve manufacturing process is conducted.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.