Separation of stroke from vestibular neuritis using the video head impulse test: machine learning models versus expert clinicians.

IF 4.8 2区 医学 Q1 CLINICAL NEUROLOGY Journal of Neurology Pub Date : 2025-03-05 DOI:10.1007/s00415-025-12918-3
Chao Wang, Jeevan Sreerama, Benjamin Nham, Nicole Reid, Nese Ozalp, James O Thomas, Cecilia Cappelen-Smith, Zeljka Calic, Andrew P Bradshaw, Sally M Rosengren, Gülden Akdal, G Michael Halmagyi, Deborah A Black, David Burke, Mukesh Prasad, Gnana K Bharathy, Miriam S Welgampola
{"title":"Separation of stroke from vestibular neuritis using the video head impulse test: machine learning models versus expert clinicians.","authors":"Chao Wang, Jeevan Sreerama, Benjamin Nham, Nicole Reid, Nese Ozalp, James O Thomas, Cecilia Cappelen-Smith, Zeljka Calic, Andrew P Bradshaw, Sally M Rosengren, Gülden Akdal, G Michael Halmagyi, Deborah A Black, David Burke, Mukesh Prasad, Gnana K Bharathy, Miriam S Welgampola","doi":"10.1007/s00415-025-12918-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute vestibular syndrome usually represents either vestibular neuritis (VN), an innocuous viral illness, or posterior circulation stroke (PCS), a potentially life-threatening event. The video head impulse test (VHIT) is a quantitative measure of the vestibulo-ocular reflex that can distinguish between these two diagnoses. It can be rapidly performed at the bedside by any trained healthcare professional but requires interpretation by an expert clinician. We developed machine learning models to differentiate between PCS and VN using only the VHIT.</p><p><strong>Methods: </strong>We trained machine learning classification models using unedited head- and eye-velocity data from acute VHIT performed in an Emergency Room on patients presenting with acute vestibular syndrome and whose final diagnosis was VN or PCS. The models were validated using an independent test dataset collected at a second institution. We compared the performance of the models against expert clinicians as well as a widely used VHIT metric: the gain cutoff value.</p><p><strong>Results: </strong>The training and test datasets comprised 252 and 49 patients, respectively. In the test dataset, the best machine learning model identified VN with 87.8% (95% CI 77.6%-95.9%) accuracy. Model performance was not significantly different (p = 0.56) from that of blinded expert clinicians who achieved 85.7% accuracy (75.5%-93.9%) and was superior (p = 0.01) to that of the optimal gain cutoff value (75.5% accuracy (63.8%-85.7%)).</p><p><strong>Conclusion: </strong>Machine learning models can effectively differentiate PCS from VN using only VHIT data, with comparable accuracy to expert clinicians. They hold promise as a tool to assist Emergency Room clinicians evaluating patients with acute vestibular syndrome.</p>","PeriodicalId":16558,"journal":{"name":"Journal of Neurology","volume":"272 3","pages":"248"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00415-025-12918-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute vestibular syndrome usually represents either vestibular neuritis (VN), an innocuous viral illness, or posterior circulation stroke (PCS), a potentially life-threatening event. The video head impulse test (VHIT) is a quantitative measure of the vestibulo-ocular reflex that can distinguish between these two diagnoses. It can be rapidly performed at the bedside by any trained healthcare professional but requires interpretation by an expert clinician. We developed machine learning models to differentiate between PCS and VN using only the VHIT.

Methods: We trained machine learning classification models using unedited head- and eye-velocity data from acute VHIT performed in an Emergency Room on patients presenting with acute vestibular syndrome and whose final diagnosis was VN or PCS. The models were validated using an independent test dataset collected at a second institution. We compared the performance of the models against expert clinicians as well as a widely used VHIT metric: the gain cutoff value.

Results: The training and test datasets comprised 252 and 49 patients, respectively. In the test dataset, the best machine learning model identified VN with 87.8% (95% CI 77.6%-95.9%) accuracy. Model performance was not significantly different (p = 0.56) from that of blinded expert clinicians who achieved 85.7% accuracy (75.5%-93.9%) and was superior (p = 0.01) to that of the optimal gain cutoff value (75.5% accuracy (63.8%-85.7%)).

Conclusion: Machine learning models can effectively differentiate PCS from VN using only VHIT data, with comparable accuracy to expert clinicians. They hold promise as a tool to assist Emergency Room clinicians evaluating patients with acute vestibular syndrome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neurology
Journal of Neurology 医学-临床神经学
CiteScore
10.00
自引率
5.00%
发文量
558
审稿时长
1 months
期刊介绍: The Journal of Neurology is an international peer-reviewed journal which provides a source for publishing original communications and reviews on clinical neurology covering the whole field. In addition, Letters to the Editors serve as a forum for clinical cases and the exchange of ideas which highlight important new findings. A section on Neurological progress serves to summarise the major findings in certain fields of neurology. Commentaries on new developments in clinical neuroscience, which may be commissioned or submitted, are published as editorials. Every neurologist interested in the current diagnosis and treatment of neurological disorders needs access to the information contained in this valuable journal.
期刊最新文献
A dose-response meta-analysis of physical activity and the risk of alzheimer's disease in prospective studies. Gait changes with aging: an early warning sign for underlying pathology. Adrenergic blockers, statins, and non-steroidal anti-inflammatory drugs are associated with later age at onset in Parkinson's disease. Blood phosphorylated Tau217 distinguishes amyloid-positive from amyloid-negative subjects in the Alzheimer's disease continuum. A systematic review and meta-analysis. Cerebral foreign body reaction (CFBR) after endovascular treatments is a rare event to be aware of: case series and review of literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1