First Report of Leaf Anthracnose Caused by Colletotrichum fructicola on Tetrastigma hemsleyanum in China.

IF 4.4 2区 农林科学 Q1 PLANT SCIENCES Plant disease Pub Date : 2025-03-04 DOI:10.1094/PDIS-12-24-2728-PDN
Youchao Dang, Meiqin Mao, Jingyi Xu, Fei Xu, Xiaoqing Zhang, Chuan Qi, Bo Zhu, Luping Qin
{"title":"First Report of Leaf Anthracnose Caused by <i>Colletotrichum fructicola</i> on <i>Tetrastigma hemsleyanum</i> in China.","authors":"Youchao Dang, Meiqin Mao, Jingyi Xu, Fei Xu, Xiaoqing Zhang, Chuan Qi, Bo Zhu, Luping Qin","doi":"10.1094/PDIS-12-24-2728-PDN","DOIUrl":null,"url":null,"abstract":"<p><p>Tetrastigma hemsleyanum in the family Vitaceae, is a rare and endangered medicinal plant endemic in China (Ji et al. 2021). In October 2024, leaf anthracnose was observed in Lishui city (118°96'E, 28°13'N), Zhejiang, affecting T. hemsleyanum plantings over an area of 5.3 × 103 m2. Disease incidence ranged from approximately 30 to 60%. Early symptoms were small circular or irregular brown spots of foliage, gradually expanding in size, then coalescing to form large irregular dark brown spots with grayish white centers causing leaves to senesce and resulting in plant death in severe cases. Leaf pieces (5×5 mm) from nine symptomatic leaves were surface disinfected with 75% ethanol for 30 s, 2.5% NaClO for 1 min, rinsed in sterile water three times, dried, placed on potato dextrose agar medium, and cultured in darkness at 28°C for 5 days. Five isolates (THP10 to THP14) were obtained by the hyphal-tip method from the nine leaves. The colonies were olivaceous to dark gray with white margins and cottony mycelium; reverse sides had black centers. Conidia were single, colorless, cylindrical, 13.37 to 17.89 × 3.91 to 5.73 μm (average 15.42 × 5.11 μm; n=50). The morphological characteristics of the isolates overlapped with those of Colletotrichum species within the C. gloeosporioides complex, including C. fiucticola (Weir et al. 2012). The internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase (CHS),calmodulin (CAL), actin (ACT), and beta-tubulin 2 (TUB2) genes were amplified using ITS1/ITS4, GDF/GDR, CHS-79F/CHS-345R, CL1C/CL2C, ACT-512F/ACT-783R, and T1/Bt2b primer sets, respectively (Weir et al. 2012). Sequences were deposited in GenBank with accession Nos. ITS: PQ571715 - PQ571719; GAPDH: PQ593912 - PQ593916; CHS: PQ593906 - PQ593910; CAL: PQ593900 - PQ593904; ACT: PQ593894 - PQ593898; TUB2: PQ593918 - PQ593922. BLASTn analysis of THP10 sequences had highest matches to the type strain of C. fructicola ICMP 18581 with ITS sequences 100% identical (JX010165; 549/549 bp), GAPDH sequences 99% identical (JX010033; 267/269 bp), CHS sequences 100.00% identical (JX009866; 274/274 bp), CAL sequences 100% identical (JX009676; 731/731 bp), ACT sequences 99% identical (JX009501; 270/272 bp), and TUB2 sequences 100% identical (JX010405; 699/699 bp). A maximum likelihood phylogenetic tree was constructed with the combined sequences data sets using MEGA 11, and the five isolates clustered with C. fructicola (Weir et al. 2012). To test pathogenicity, five isolates of C. fructicola were evaluated, leaves on three healthy 6-month-old potted T. hemsleyanum seedlings were wounded with sterile needles and inoculated with 5 mm diameter mycelial plugs. Sterile PDA plugs served as controls. After inoculation, the plants were incubated at 28°C, 85% relative humidity, with a 12 h photoperiod. The experiment was repeated three times. Symptoms similar to those from the field were observed 21 days after inoculation, whereas control leaves remained asymptomatic. The pathogen was successfully re-isolated from the symptomatic leaves and identified by morphology and ITS, GAPDH, CHS, CAL, ACT, TUB2 genes, completing Koch's postulates. No pathogens were isolated from the control plants. C. fructicola has been reported to cause anthracnose in many medicinal plants (Hou et al. 2024; Kang et al. 2023). This is the first report of C. fructicola causing leaf anthracnose on T. hemsleyanum in China. The accurate identification of the pathogen will provide a basis for the prevention and control of leaf anthracnose on T. hemsleyanum in the future.</p>","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PDIS-12-24-2728-PDN","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tetrastigma hemsleyanum in the family Vitaceae, is a rare and endangered medicinal plant endemic in China (Ji et al. 2021). In October 2024, leaf anthracnose was observed in Lishui city (118°96'E, 28°13'N), Zhejiang, affecting T. hemsleyanum plantings over an area of 5.3 × 103 m2. Disease incidence ranged from approximately 30 to 60%. Early symptoms were small circular or irregular brown spots of foliage, gradually expanding in size, then coalescing to form large irregular dark brown spots with grayish white centers causing leaves to senesce and resulting in plant death in severe cases. Leaf pieces (5×5 mm) from nine symptomatic leaves were surface disinfected with 75% ethanol for 30 s, 2.5% NaClO for 1 min, rinsed in sterile water three times, dried, placed on potato dextrose agar medium, and cultured in darkness at 28°C for 5 days. Five isolates (THP10 to THP14) were obtained by the hyphal-tip method from the nine leaves. The colonies were olivaceous to dark gray with white margins and cottony mycelium; reverse sides had black centers. Conidia were single, colorless, cylindrical, 13.37 to 17.89 × 3.91 to 5.73 μm (average 15.42 × 5.11 μm; n=50). The morphological characteristics of the isolates overlapped with those of Colletotrichum species within the C. gloeosporioides complex, including C. fiucticola (Weir et al. 2012). The internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase (CHS),calmodulin (CAL), actin (ACT), and beta-tubulin 2 (TUB2) genes were amplified using ITS1/ITS4, GDF/GDR, CHS-79F/CHS-345R, CL1C/CL2C, ACT-512F/ACT-783R, and T1/Bt2b primer sets, respectively (Weir et al. 2012). Sequences were deposited in GenBank with accession Nos. ITS: PQ571715 - PQ571719; GAPDH: PQ593912 - PQ593916; CHS: PQ593906 - PQ593910; CAL: PQ593900 - PQ593904; ACT: PQ593894 - PQ593898; TUB2: PQ593918 - PQ593922. BLASTn analysis of THP10 sequences had highest matches to the type strain of C. fructicola ICMP 18581 with ITS sequences 100% identical (JX010165; 549/549 bp), GAPDH sequences 99% identical (JX010033; 267/269 bp), CHS sequences 100.00% identical (JX009866; 274/274 bp), CAL sequences 100% identical (JX009676; 731/731 bp), ACT sequences 99% identical (JX009501; 270/272 bp), and TUB2 sequences 100% identical (JX010405; 699/699 bp). A maximum likelihood phylogenetic tree was constructed with the combined sequences data sets using MEGA 11, and the five isolates clustered with C. fructicola (Weir et al. 2012). To test pathogenicity, five isolates of C. fructicola were evaluated, leaves on three healthy 6-month-old potted T. hemsleyanum seedlings were wounded with sterile needles and inoculated with 5 mm diameter mycelial plugs. Sterile PDA plugs served as controls. After inoculation, the plants were incubated at 28°C, 85% relative humidity, with a 12 h photoperiod. The experiment was repeated three times. Symptoms similar to those from the field were observed 21 days after inoculation, whereas control leaves remained asymptomatic. The pathogen was successfully re-isolated from the symptomatic leaves and identified by morphology and ITS, GAPDH, CHS, CAL, ACT, TUB2 genes, completing Koch's postulates. No pathogens were isolated from the control plants. C. fructicola has been reported to cause anthracnose in many medicinal plants (Hou et al. 2024; Kang et al. 2023). This is the first report of C. fructicola causing leaf anthracnose on T. hemsleyanum in China. The accurate identification of the pathogen will provide a basis for the prevention and control of leaf anthracnose on T. hemsleyanum in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant disease
Plant disease 农林科学-植物科学
CiteScore
5.10
自引率
13.30%
发文量
1993
审稿时长
2 months
期刊介绍: Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.
期刊最新文献
The Efficacy of Orange Terpene and Bacillus mycoides Strain BM103 on the Control of Periwinkle Leaf Yellowing Phytoplasma. Optimizing qPCR Detection of 'Candidatus Liberibacter asiaticus': Introducing a New Type of Internal Standard. Preplant Soil Treatments Influence Tree Performance and Nematode Dynamics in Replanted Cherry Orchards. First report of Pantoea dispersa causing strawberry root rot in China. First Report of Rhizoctonia solani AG 2-1 Causing Root and Bulb Rot on Hymenocallis glauca in Mexico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1