Jun Sun, Chuantao Fang, Xixi Qin, Wenwen Si, Fei Wang, Yanna Li, Xiaoli Yan
{"title":"Hemozoin: a waste product after heme detoxification?","authors":"Jun Sun, Chuantao Fang, Xixi Qin, Wenwen Si, Fei Wang, Yanna Li, Xiaoli Yan","doi":"10.1186/s13071-025-06699-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hemozoin is considered a waste byproduct of heme detoxification following hemoglobin digestion; consequently, the biological functions of hemozoin in hemozoin-producing organisms have often been overlooked. However, recent findings indicate that Schistosoma hemozoin facilitates the transfer of iron from erythrocytes to eggs through its formation and degradation, thereby increasing interest in the role of malarial hemozoin.</p><p><strong>Methods: </strong>Using transmission electron microscopy, we compared the formation of Schistosoma hemozoin and malaria hemozoin. Through transcriptome analysis of different stages of P. falciparum 3D7<sup>WT</sup> and P. falciparum 3D7<sup>C580Y</sup>,- where the latter serves as a control with reduced hemozoin production, -we analyzed expression patterns of genes related to DNA synthesis, iron, and heme utilization. Using light microscopy, we observed hemozoin aggregation following artemether treatment, and macrophage morphology after ingesting hemozoin in vivo and in vitro.</p><p><strong>Results: </strong>Similar to Schistosoma hemozoin, malaria hemozoin consists of heme aggregation and a lipid matrix, likely involved in lipid processing and the utilization of heme and iron. Transcriptome analysis reveals that during the trophozoite stage, the expression levels of these genes in P. falciparum 3D7<sup>WT</sup> and P. falciparum 3D7C580Y are higher than those during the schizont stage. Correspondingly, less hemozoin was detected at the trophozoite stage, while more was observed during the schizont stage. These results suggest that when more heme and iron are utilized, less heme is available for hemozoin formation. Conversely, when less heme and iron are utilized, they can accumulate for hemozoin formation during the schizont stage, likely benefiting lipid remodeling. Disruption of heme utilization and hemozoin aggregation may lead to parasite death. In addition, the hemozoin released by schizonts can impair macrophage functions, potentially protecting merozoites from phagocytosis. Furthermore, it may be carried by gametocytes into the next host, fulfilling their requirements for iron and heme during their development in mosquitoes.</p><p><strong>Conclusions: </strong>Hemozoin is not a waste byproduct of heme detoxification but instead plays a crucial role in the parasite's life cycle.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"83"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06699-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hemozoin is considered a waste byproduct of heme detoxification following hemoglobin digestion; consequently, the biological functions of hemozoin in hemozoin-producing organisms have often been overlooked. However, recent findings indicate that Schistosoma hemozoin facilitates the transfer of iron from erythrocytes to eggs through its formation and degradation, thereby increasing interest in the role of malarial hemozoin.
Methods: Using transmission electron microscopy, we compared the formation of Schistosoma hemozoin and malaria hemozoin. Through transcriptome analysis of different stages of P. falciparum 3D7WT and P. falciparum 3D7C580Y,- where the latter serves as a control with reduced hemozoin production, -we analyzed expression patterns of genes related to DNA synthesis, iron, and heme utilization. Using light microscopy, we observed hemozoin aggregation following artemether treatment, and macrophage morphology after ingesting hemozoin in vivo and in vitro.
Results: Similar to Schistosoma hemozoin, malaria hemozoin consists of heme aggregation and a lipid matrix, likely involved in lipid processing and the utilization of heme and iron. Transcriptome analysis reveals that during the trophozoite stage, the expression levels of these genes in P. falciparum 3D7WT and P. falciparum 3D7C580Y are higher than those during the schizont stage. Correspondingly, less hemozoin was detected at the trophozoite stage, while more was observed during the schizont stage. These results suggest that when more heme and iron are utilized, less heme is available for hemozoin formation. Conversely, when less heme and iron are utilized, they can accumulate for hemozoin formation during the schizont stage, likely benefiting lipid remodeling. Disruption of heme utilization and hemozoin aggregation may lead to parasite death. In addition, the hemozoin released by schizonts can impair macrophage functions, potentially protecting merozoites from phagocytosis. Furthermore, it may be carried by gametocytes into the next host, fulfilling their requirements for iron and heme during their development in mosquitoes.
Conclusions: Hemozoin is not a waste byproduct of heme detoxification but instead plays a crucial role in the parasite's life cycle.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.