MCP-1 promotes ILK phosphorylation at Ser246 during endometriosis development and affects the pregnancy outcome.

IF 3.6 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Molecular human reproduction Pub Date : 2025-03-04 DOI:10.1093/molehr/gaaf004
Upendra Kumar Soni, Rupal Tripathi, Pushplata Sankhwar, Suparna Kumari, Mohini Soni, Anveshika Manoj, Vaibhave Ubba, Satish Gupta, Raj Kumar Verma, J Venkatesh Pratap, Rajesh Kumar Jha
{"title":"MCP-1 promotes ILK phosphorylation at Ser246 during endometriosis development and affects the pregnancy outcome.","authors":"Upendra Kumar Soni, Rupal Tripathi, Pushplata Sankhwar, Suparna Kumari, Mohini Soni, Anveshika Manoj, Vaibhave Ubba, Satish Gupta, Raj Kumar Verma, J Venkatesh Pratap, Rajesh Kumar Jha","doi":"10.1093/molehr/gaaf004","DOIUrl":null,"url":null,"abstract":"<p><p>In women with endometriosis, monocyte chemoattractant protein 1 (MCP-1) or chemokine (C-C motif) ligand 2 (CCL2) is elevated in serum, peritoneal fluid, and endometriotic lesions, though its exact role in endometriosis is still unknown. The MCP-1 downstream molecule integrin-linked kinase (ILK) is involved in several cellular events. Our recent findings suggest that MCP-1 promotes an inflammatory response via ILK in a mouse endometriosis model. MCP-1 also favors human endometriotic cell aggregation, colonization, migration, and invasion, which are reversed by the ILK inhibitor compound (CPD) 22 (600 nM). Furthermore, the inflammatory response to MCP-1 is reduced by ILK inhibition (CPD22, 20 mg/kg body weight) in a mouse model. We studied MCP-1/chemokine (C-C motif) receptor type (CCR)2-mediated ILK signaling in endometriosis and observe a positive association of ILK and CCR2 with endometriosis in patients. Our immunoprecipitation and molecular docking studies confirm ILK interaction with CCR2 under a high MCP-1 level in Hs832(C).TCs (human endometriotic cells). MCP-1 promotes ILK-Ser246 phosphorylation in endometriotic cells in human and mouse models. The mouse model shows the same inflammatory markers as seen in human endometriosis and mimics some of the aspects of the inflammatory reaction. Targeting ILK by CDP22 (20 mg/kg) suppresses endometriosis progression in the mouse model. Altered MCP-1-ILK signaling leads to poor pregnancy outcomes in the mouse model. Further, the in-silico results suggest that CPD22 stabilizes the interaction with Asp234 and His318 residues of ILK and inhibits the Ser246 phosphorylation. In conclusion, MCP-1 activates ILK at the S246 residue and leads to lesion development/progression, reflecting the therapeutic importance of ILK for endometriosis management through the mouse model.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaaf004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In women with endometriosis, monocyte chemoattractant protein 1 (MCP-1) or chemokine (C-C motif) ligand 2 (CCL2) is elevated in serum, peritoneal fluid, and endometriotic lesions, though its exact role in endometriosis is still unknown. The MCP-1 downstream molecule integrin-linked kinase (ILK) is involved in several cellular events. Our recent findings suggest that MCP-1 promotes an inflammatory response via ILK in a mouse endometriosis model. MCP-1 also favors human endometriotic cell aggregation, colonization, migration, and invasion, which are reversed by the ILK inhibitor compound (CPD) 22 (600 nM). Furthermore, the inflammatory response to MCP-1 is reduced by ILK inhibition (CPD22, 20 mg/kg body weight) in a mouse model. We studied MCP-1/chemokine (C-C motif) receptor type (CCR)2-mediated ILK signaling in endometriosis and observe a positive association of ILK and CCR2 with endometriosis in patients. Our immunoprecipitation and molecular docking studies confirm ILK interaction with CCR2 under a high MCP-1 level in Hs832(C).TCs (human endometriotic cells). MCP-1 promotes ILK-Ser246 phosphorylation in endometriotic cells in human and mouse models. The mouse model shows the same inflammatory markers as seen in human endometriosis and mimics some of the aspects of the inflammatory reaction. Targeting ILK by CDP22 (20 mg/kg) suppresses endometriosis progression in the mouse model. Altered MCP-1-ILK signaling leads to poor pregnancy outcomes in the mouse model. Further, the in-silico results suggest that CPD22 stabilizes the interaction with Asp234 and His318 residues of ILK and inhibits the Ser246 phosphorylation. In conclusion, MCP-1 activates ILK at the S246 residue and leads to lesion development/progression, reflecting the therapeutic importance of ILK for endometriosis management through the mouse model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MCP-1 在子宫内膜异位症发展过程中促进 ILK 在 Ser246 处磷酸化并影响妊娠结局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular human reproduction
Molecular human reproduction 生物-发育生物学
CiteScore
8.30
自引率
0.00%
发文量
37
审稿时长
6-12 weeks
期刊介绍: MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.
期刊最新文献
MCP-1 promotes ILK phosphorylation at Ser246 during endometriosis development and affects the pregnancy outcome. An aberrant protamine ratio is associated with decreased H4ac levels in murine and human sperm. Mouse modeling of familial human SYCE1 c.197-2A>G splice site mutation leads to meiotic recombination failure and non-obstructive azoospermia. Endometrial stromal cell signaling and microRNA exosome content in women with adenomyosis. Animal and vegetal materials of mouse oocytes segregate at first zygotic cleavage: a simple mechanism that makes the two-cell blastomeres differ reciprocally from the start.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1