Probiotic Potential of Yeast, Mold, and Intermediate Morphotypes of Geotrichum candidum in Modulating Gut Microbiota and Body Physiology in Mice.

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Probiotics and Antimicrobial Proteins Pub Date : 2025-03-04 DOI:10.1007/s12602-025-10497-3
Madeeha Gohar, Nida Shaheen, Sagar M Goyal, Sunil Kumar Mor, Luis M Rodriguez-R, Muhammad Imran
{"title":"Probiotic Potential of Yeast, Mold, and Intermediate Morphotypes of Geotrichum candidum in Modulating Gut Microbiota and Body Physiology in Mice.","authors":"Madeeha Gohar, Nida Shaheen, Sagar M Goyal, Sunil Kumar Mor, Luis M Rodriguez-R, Muhammad Imran","doi":"10.1007/s12602-025-10497-3","DOIUrl":null,"url":null,"abstract":"<p><p>Geotrichum candidum, a polymorphic fungus, exists in yeast, mold, and intermediate morphotypes, each with varying genome sizes and phenotypic traits. While G. candidum has been studied as a probiotic in dairy cattle and aquaculture, the differential probiotic potential of its morphotypes has not been fully investigated; therefore, the current study was designed to investigate their impact on the modulation of physiological and gut microbial diversity in BALB/c male mice. In this study, four strains of G. candidum were used, comprising two yeast morphotypes (QAUGC01 and UCMA3730), one mold morphotype (UCMA103), and one intermediate morphotype (UCMA91). BALB/c male mice were administered G. candidum yeast, intermediate, and mold morphotypes via drinking water for 4 weeks. After 4 weeks of experimentation, the yeast morphotype (QAUGC01) notably facilitated healthy weight gain compared to other groups. This was accompanied by significant increases in red blood cell count (p = 0.01). Importantly, QAUGC01 showed no detrimental effects on kidney function, as evidenced by significantly reduced CPK levels (77.25 ± 4.87 U/L) and low cholesterol levels (64.75 ± 0.83 mg/dL). Metagenomic analysis revealed that Firmicutes, Bacteroidetes, and Proteobacteria were predominant bacterial phyla, while Ascomycota and Basidiomycota dominated the fungal populations. Lactobacillus and Bifidobacterium were prominent in the gastrointestinal tract of QAUGC01-treated mice, while Lactococcus correlated with intermediate and mold morphotypes. Predictive functional annotation (PICRUSt2) has revealed the maximum relative abundance of metabolic pathways in mold and intermediate-supplemented mice gut. In contrast, the yeast morphotype (UCMA3730) exhibited a higher metabolic pathway activity in the large intestine. Conclusively, yeast morphotypes increase beneficial bacterial diversity, including Brevibacillus and Bacillus, particularly lactic acid bacteria throughout the gastrointestinal tract. These findings suggest that different G. candidum morphotypes have distinct probiotic potentials, with implications for enhancing gut health in food and feed applications.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-025-10497-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Geotrichum candidum, a polymorphic fungus, exists in yeast, mold, and intermediate morphotypes, each with varying genome sizes and phenotypic traits. While G. candidum has been studied as a probiotic in dairy cattle and aquaculture, the differential probiotic potential of its morphotypes has not been fully investigated; therefore, the current study was designed to investigate their impact on the modulation of physiological and gut microbial diversity in BALB/c male mice. In this study, four strains of G. candidum were used, comprising two yeast morphotypes (QAUGC01 and UCMA3730), one mold morphotype (UCMA103), and one intermediate morphotype (UCMA91). BALB/c male mice were administered G. candidum yeast, intermediate, and mold morphotypes via drinking water for 4 weeks. After 4 weeks of experimentation, the yeast morphotype (QAUGC01) notably facilitated healthy weight gain compared to other groups. This was accompanied by significant increases in red blood cell count (p = 0.01). Importantly, QAUGC01 showed no detrimental effects on kidney function, as evidenced by significantly reduced CPK levels (77.25 ± 4.87 U/L) and low cholesterol levels (64.75 ± 0.83 mg/dL). Metagenomic analysis revealed that Firmicutes, Bacteroidetes, and Proteobacteria were predominant bacterial phyla, while Ascomycota and Basidiomycota dominated the fungal populations. Lactobacillus and Bifidobacterium were prominent in the gastrointestinal tract of QAUGC01-treated mice, while Lactococcus correlated with intermediate and mold morphotypes. Predictive functional annotation (PICRUSt2) has revealed the maximum relative abundance of metabolic pathways in mold and intermediate-supplemented mice gut. In contrast, the yeast morphotype (UCMA3730) exhibited a higher metabolic pathway activity in the large intestine. Conclusively, yeast morphotypes increase beneficial bacterial diversity, including Brevibacillus and Bacillus, particularly lactic acid bacteria throughout the gastrointestinal tract. These findings suggest that different G. candidum morphotypes have distinct probiotic potentials, with implications for enhancing gut health in food and feed applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
期刊最新文献
Akkermansia muciniphila Akk11 Supplementation Attenuates MPTP-Induced Neurodegeneration by Inhibiting Microglial NLRP3 Inflammasome. Probiotic Potential of Yeast, Mold, and Intermediate Morphotypes of Geotrichum candidum in Modulating Gut Microbiota and Body Physiology in Mice. Gerobiotics: Exploring the Potential and Limitations of Repurposing Probiotics in Addressing Aging Hallmarks and Chronic Diseases. Heat-killed Lactiplantibacillus plantarum WB3813 and Lactiplantibacillus plantarum WB3814 Alleviate LPS-Induced Inflammatory Damage and Apoptosis in A549 Cells. Preclinical Safety Assessment of the Oral Administration of Lactobacillus plantarum GUANKE in Animal Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1