Shuolin Liang, Di He, Bin Qin, Chaoguo Meng, Jianxin Zhang, Lanfen Chen, Zhijian Liang
{"title":"Frequency-Dependent Changes in Wavelet-ALFF in Patients With Acute Basal Ganglia Ischemic Stroke: A Resting-State fMRI Study.","authors":"Shuolin Liang, Di He, Bin Qin, Chaoguo Meng, Jianxin Zhang, Lanfen Chen, Zhijian Liang","doi":"10.1155/np/8003718","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background and Purpose:</b> Motor impairment is a common occurrence in patients with acute basal ganglia (BG) ischemic stroke (ABGIS). However, the underlying mechanisms of poststroke motor dysfunction remain incompletely elucidated. In this study, we employed multifrequency band wavelet transform-based amplitude of low-frequency fluctuations (Wavelet-ALFFs) to investigate the alterations of spontaneous regional neural activity in patients with ABGIS. <b>Methods:</b> A total of 39 ABGIS patients with motor dysfunction and 45 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. Wavelet-ALFF values were calculated in the conventional frequency band (0.01-0.08 Hz), slow-5 frequency band (0.01-0.027 Hz), and slow-4 frequency band (0.027-0.073 Hz). A two-sample <i>t</i>-test was performed to compare the Wavelet-ALFF values between the two groups with sex as a covariate and Gaussian random field (GRF) theory (voxel <i>p</i> < 0.001, cluster <i>p</i> < 0.05, two-tailed) was used for the multiple corrections. Furthermore, spearman correlation analysis was performed to assess the relationship between alterations in regional neural activity between Fugl-Meyer Assessment (FMA) and National Institutes of Health Stroke Scale (NIHSS) scores. <b>Results:</b> In comparison to HCs, patients with ABGIS showed significantly increased Wavelet-ALFF in the left middle temporal gyrus (MTG) and decreased Wavelet-ALFF in the right inferior frontal operculum (IFO) across all three frequency bands (conventional, slow-4, and slow-5). In the left superior occipital gyrus (SOG), Wavelet-ALFF was decreased in the conventional frequency band but increased in the slow-4 frequency band. Additionally, patients with ABGIS demonstrated reduced Wavelet-ALFF in the right superior temporal gyrus (STG) in the conventional and slow-4 frequency bands. In the slow-5 frequency band, increased Wavelet-ALFF was observed in the left calcarine cortex (CC), left middle frontal gyrus (MFG), left supramarginal gyrus (SMG), and left postcentral gyrus (PCG), while decreased Wavelet-ALFF was noted in the right precuneus (PCu). Correlation analysis revealed that increased Wavelet-ALFF in the left CC in the slow-5 frequency band was positively correlated with the FMA score. No other correlations were detected in the conventional and slow-4 frequency bands. <b>Conclusions:</b> The altered spontaneous neural activity was frequency-specific in patients with ABGIS, and the slow-5 frequency band exhibited better results. Furthermore, the relationship between spontaneous brain activity and clinical characteristics highlighted patterns of neural alterations associated with motor dysfunction. These findings may provide novel insights into the neural mechanisms underlying motor dysfunction in ABGIS.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2025 ","pages":"8003718"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/np/8003718","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Purpose: Motor impairment is a common occurrence in patients with acute basal ganglia (BG) ischemic stroke (ABGIS). However, the underlying mechanisms of poststroke motor dysfunction remain incompletely elucidated. In this study, we employed multifrequency band wavelet transform-based amplitude of low-frequency fluctuations (Wavelet-ALFFs) to investigate the alterations of spontaneous regional neural activity in patients with ABGIS. Methods: A total of 39 ABGIS patients with motor dysfunction and 45 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. Wavelet-ALFF values were calculated in the conventional frequency band (0.01-0.08 Hz), slow-5 frequency band (0.01-0.027 Hz), and slow-4 frequency band (0.027-0.073 Hz). A two-sample t-test was performed to compare the Wavelet-ALFF values between the two groups with sex as a covariate and Gaussian random field (GRF) theory (voxel p < 0.001, cluster p < 0.05, two-tailed) was used for the multiple corrections. Furthermore, spearman correlation analysis was performed to assess the relationship between alterations in regional neural activity between Fugl-Meyer Assessment (FMA) and National Institutes of Health Stroke Scale (NIHSS) scores. Results: In comparison to HCs, patients with ABGIS showed significantly increased Wavelet-ALFF in the left middle temporal gyrus (MTG) and decreased Wavelet-ALFF in the right inferior frontal operculum (IFO) across all three frequency bands (conventional, slow-4, and slow-5). In the left superior occipital gyrus (SOG), Wavelet-ALFF was decreased in the conventional frequency band but increased in the slow-4 frequency band. Additionally, patients with ABGIS demonstrated reduced Wavelet-ALFF in the right superior temporal gyrus (STG) in the conventional and slow-4 frequency bands. In the slow-5 frequency band, increased Wavelet-ALFF was observed in the left calcarine cortex (CC), left middle frontal gyrus (MFG), left supramarginal gyrus (SMG), and left postcentral gyrus (PCG), while decreased Wavelet-ALFF was noted in the right precuneus (PCu). Correlation analysis revealed that increased Wavelet-ALFF in the left CC in the slow-5 frequency band was positively correlated with the FMA score. No other correlations were detected in the conventional and slow-4 frequency bands. Conclusions: The altered spontaneous neural activity was frequency-specific in patients with ABGIS, and the slow-5 frequency band exhibited better results. Furthermore, the relationship between spontaneous brain activity and clinical characteristics highlighted patterns of neural alterations associated with motor dysfunction. These findings may provide novel insights into the neural mechanisms underlying motor dysfunction in ABGIS.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.