{"title":"Cortical Morphology Alterations Mediate the Relationship Between Glymphatic System Function and the Severity of Asthenopia.","authors":"Yilei Chen, Jun Xu, Yingnan Kong, Yingjie Kang, Zhigang Gong, Hui Wang, Yanwen Huang, Songhua Zhan, Ying Yu, Xiaoli Lv, Wenli Tan","doi":"10.1155/ijbi/4464776","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>: This study is aimed at assessing glymphatic function by diffusion tensor image analysis along the perivascular space (DTI-ALPS) and its associations with cortical morphological changes and severity of accommodative asthenopia (AA). <b>Methods</b>: We prospectively enrolled 50 patients with AA and 47 healthy controls (HCs). All participants underwent diffusion tensor imaging (DTI) and T1-weighted imaging and completed the asthenopia survey scale (ASS). Differences in brain morphometry and the analysis along the perivascular space (ALPS) index between the two groups were compared. The correlation and mediation analyses were conducted to explore the relationships between them. <b>Results</b>: Compared to HCs, patients with AA exhibited significantly increased sulcal depth in the left superior occipital gyrus (SOG.L) and increased cortical thickness in the left superior temporal gyrus (STG.L), left middle occipital gyrus (MOG.L), left postcentral gyrus (PoCG.L), and left precuneus (PCUN.L). Additionally, patients with AA had a significantly lower ALPS index than HCs. The sulcal depth of the SOG.L was significantly positively correlated with the ASS score in patients with AA, and a positive correlation was found between the cortical thickness of the MOG.L and ASS score. The ALPS index was negatively associated with the sulcal depth of the SOG.L and cortical thickness of the MOG.L. Mediation analysis revealed that the sulcal depth of SOG.L and cortical thickness of MOG.L partially mediated the impact of the DTI-ALPS index on the ASS score. <b>Conclusion</b>: Our findings suggested that patients with AA exhibit impaired glymphatic function, which may contribute to the severity of asthenopia through its influence on cortical morphological changes. The ALPS index is anticipated to become a potential imaging biomarker for patients with AA. <b>Trial Registration:</b> Chinese Registry of Clinical Trials: ChiCTR1900028306.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2025 ","pages":"4464776"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbi/4464776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study is aimed at assessing glymphatic function by diffusion tensor image analysis along the perivascular space (DTI-ALPS) and its associations with cortical morphological changes and severity of accommodative asthenopia (AA). Methods: We prospectively enrolled 50 patients with AA and 47 healthy controls (HCs). All participants underwent diffusion tensor imaging (DTI) and T1-weighted imaging and completed the asthenopia survey scale (ASS). Differences in brain morphometry and the analysis along the perivascular space (ALPS) index between the two groups were compared. The correlation and mediation analyses were conducted to explore the relationships between them. Results: Compared to HCs, patients with AA exhibited significantly increased sulcal depth in the left superior occipital gyrus (SOG.L) and increased cortical thickness in the left superior temporal gyrus (STG.L), left middle occipital gyrus (MOG.L), left postcentral gyrus (PoCG.L), and left precuneus (PCUN.L). Additionally, patients with AA had a significantly lower ALPS index than HCs. The sulcal depth of the SOG.L was significantly positively correlated with the ASS score in patients with AA, and a positive correlation was found between the cortical thickness of the MOG.L and ASS score. The ALPS index was negatively associated with the sulcal depth of the SOG.L and cortical thickness of the MOG.L. Mediation analysis revealed that the sulcal depth of SOG.L and cortical thickness of MOG.L partially mediated the impact of the DTI-ALPS index on the ASS score. Conclusion: Our findings suggested that patients with AA exhibit impaired glymphatic function, which may contribute to the severity of asthenopia through its influence on cortical morphological changes. The ALPS index is anticipated to become a potential imaging biomarker for patients with AA. Trial Registration: Chinese Registry of Clinical Trials: ChiCTR1900028306.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics