Artificial intelligence and pediatric acute kidney injury: a mini-review and white paper.

Frontiers in nephrology Pub Date : 2025-02-18 eCollection Date: 2025-01-01 DOI:10.3389/fneph.2025.1548776
Jieji Hu, Rupesh Raina
{"title":"Artificial intelligence and pediatric acute kidney injury: a mini-review and white paper.","authors":"Jieji Hu, Rupesh Raina","doi":"10.3389/fneph.2025.1548776","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) in pediatric and neonatal populations poses significant diagnostic and management challenges, with delayed detection contributing to long-term complications such as hypertension and chronic kidney disease. Recent advancements in artificial intelligence (AI) offer new avenues for early detection, risk stratification, and personalized care. This paper explores the application of AI models, including supervised and unsupervised machine learning, in predicting AKI, improving clinical decision-making, and identifying subphenotypes that respond differently to interventions. It discusses the integration of AI with existing risk scores and biomarkers to enhance predictive accuracy and its potential to revolutionize pediatric nephrology. However, barriers such as data quality, algorithmic bias, and the need for transparent and ethical implementation are critical considerations. Future directions emphasize incorporating biomarkers, expanding external validation, and ensuring equitable access to optimize outcomes in pediatric AKI care.</p>","PeriodicalId":73091,"journal":{"name":"Frontiers in nephrology","volume":"5 ","pages":"1548776"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fneph.2025.1548776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acute kidney injury (AKI) in pediatric and neonatal populations poses significant diagnostic and management challenges, with delayed detection contributing to long-term complications such as hypertension and chronic kidney disease. Recent advancements in artificial intelligence (AI) offer new avenues for early detection, risk stratification, and personalized care. This paper explores the application of AI models, including supervised and unsupervised machine learning, in predicting AKI, improving clinical decision-making, and identifying subphenotypes that respond differently to interventions. It discusses the integration of AI with existing risk scores and biomarkers to enhance predictive accuracy and its potential to revolutionize pediatric nephrology. However, barriers such as data quality, algorithmic bias, and the need for transparent and ethical implementation are critical considerations. Future directions emphasize incorporating biomarkers, expanding external validation, and ensuring equitable access to optimize outcomes in pediatric AKI care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能与小儿急性肾损伤:小型综述和白皮书。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introducing the "urine biochemical approach": an alternative tool for improving acute kidney injury monitoring in critically ill patients. Artificial intelligence and pediatric acute kidney injury: a mini-review and white paper. The road ahead: emerging therapies for primary IgA nephropathy. Case report: Novel ACTN4 variant of uncertain significance in a pediatric case of steroid-resistant nephrotic syndrome requesting kidney transplantation. The impact of SLCO1B1 polymorphisms on homocysteine concentrations: evidence for a stronger association in men.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1