AI-enabled manufacturing process discovery.

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES PNAS nexus Pub Date : 2025-02-20 eCollection Date: 2025-02-01 DOI:10.1093/pnasnexus/pgaf054
D Quispe, D Kozjek, M Mozaffar, T Xue, J Cao
{"title":"AI-enabled manufacturing process discovery.","authors":"D Quispe, D Kozjek, M Mozaffar, T Xue, J Cao","doi":"10.1093/pnasnexus/pgaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Discovering manufacturing processes has been largely experienced-based. We propose a shift to a systematic approach driven by dependencies between energy inputs and performance outputs. Uncovering these dependencies across diverse process classes requires a universal language that characterizes process inputs and performances. Traditional manufacturing languages, with their individualized syntax and terminology, hinder the characterization across varying length scales and energy inputs. To enable the evaluation of process dependencies, we propose a broad manufacturing language that facilitates the characterization of diverse process classes, which include energy inputs, tool-material interactions, material compatibility, and performance outputs. We analyze the relationships between these characteristics by constructing a dataset of over 50 process classes, which we use to train a variational autoencoder (VAE) model. This generative model encodes our dataset into a 2D latent space, where we can explore, select, and generate processes based on desired performances and retrieve the corresponding process characteristics. After verifying the dependencies derived from the VAE model match with existing knowledge on manufacturing processes, we demonstrate the usefulness of using the model to discover new potential manufacturing processes through three illustrative cases.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 2","pages":"pgaf054"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Discovering manufacturing processes has been largely experienced-based. We propose a shift to a systematic approach driven by dependencies between energy inputs and performance outputs. Uncovering these dependencies across diverse process classes requires a universal language that characterizes process inputs and performances. Traditional manufacturing languages, with their individualized syntax and terminology, hinder the characterization across varying length scales and energy inputs. To enable the evaluation of process dependencies, we propose a broad manufacturing language that facilitates the characterization of diverse process classes, which include energy inputs, tool-material interactions, material compatibility, and performance outputs. We analyze the relationships between these characteristics by constructing a dataset of over 50 process classes, which we use to train a variational autoencoder (VAE) model. This generative model encodes our dataset into a 2D latent space, where we can explore, select, and generate processes based on desired performances and retrieve the corresponding process characteristics. After verifying the dependencies derived from the VAE model match with existing knowledge on manufacturing processes, we demonstrate the usefulness of using the model to discover new potential manufacturing processes through three illustrative cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Mechanistic and structural insights into the itaconate-producing trans-aconitate decarboxylase Tad1. Deep oxygen-depleted depressions in a Red Sea coral reef sustain resistant ecosystems. Merging public elementary schools to reduce racial/ethnic segregation. Multicriteria models provide enhanced insight for siting US offshore wind. Terminating pandemics with smartwatches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1