AI-enabled manufacturing process discovery.

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES PNAS nexus Pub Date : 2025-02-20 eCollection Date: 2025-02-01 DOI:10.1093/pnasnexus/pgaf054
D Quispe, D Kozjek, M Mozaffar, T Xue, J Cao
{"title":"AI-enabled manufacturing process discovery.","authors":"D Quispe, D Kozjek, M Mozaffar, T Xue, J Cao","doi":"10.1093/pnasnexus/pgaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Discovering manufacturing processes has been largely experienced-based. We propose a shift to a systematic approach driven by dependencies between energy inputs and performance outputs. Uncovering these dependencies across diverse process classes requires a universal language that characterizes process inputs and performances. Traditional manufacturing languages, with their individualized syntax and terminology, hinder the characterization across varying length scales and energy inputs. To enable the evaluation of process dependencies, we propose a broad manufacturing language that facilitates the characterization of diverse process classes, which include energy inputs, tool-material interactions, material compatibility, and performance outputs. We analyze the relationships between these characteristics by constructing a dataset of over 50 process classes, which we use to train a variational autoencoder (VAE) model. This generative model encodes our dataset into a 2D latent space, where we can explore, select, and generate processes based on desired performances and retrieve the corresponding process characteristics. After verifying the dependencies derived from the VAE model match with existing knowledge on manufacturing processes, we demonstrate the usefulness of using the model to discover new potential manufacturing processes through three illustrative cases.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 2","pages":"pgaf054"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Discovering manufacturing processes has been largely experienced-based. We propose a shift to a systematic approach driven by dependencies between energy inputs and performance outputs. Uncovering these dependencies across diverse process classes requires a universal language that characterizes process inputs and performances. Traditional manufacturing languages, with their individualized syntax and terminology, hinder the characterization across varying length scales and energy inputs. To enable the evaluation of process dependencies, we propose a broad manufacturing language that facilitates the characterization of diverse process classes, which include energy inputs, tool-material interactions, material compatibility, and performance outputs. We analyze the relationships between these characteristics by constructing a dataset of over 50 process classes, which we use to train a variational autoencoder (VAE) model. This generative model encodes our dataset into a 2D latent space, where we can explore, select, and generate processes based on desired performances and retrieve the corresponding process characteristics. After verifying the dependencies derived from the VAE model match with existing knowledge on manufacturing processes, we demonstrate the usefulness of using the model to discover new potential manufacturing processes through three illustrative cases.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持人工智能的制造流程发现。
发现制造过程在很大程度上是基于经验的。我们建议转向一种由能量输入和性能输出之间的依赖关系驱动的系统方法。揭示跨不同流程类的这些依赖关系需要一种通用语言来描述流程输入和性能。传统的制造语言,由于其个性化的语法和术语,阻碍了不同长度尺度和能量输入的表征。为了能够评估过程依赖性,我们提出了一种广泛的制造语言,以促进不同过程类别的表征,包括能量输入、工具-材料相互作用、材料兼容性和性能输出。我们通过构建超过50个过程类的数据集来分析这些特征之间的关系,我们使用该数据集来训练变分自编码器(VAE)模型。这个生成模型将我们的数据集编码成一个二维潜在空间,在那里我们可以根据期望的性能探索、选择和生成过程,并检索相应的过程特征。在验证了从VAE模型派生的依赖关系与现有的制造过程知识相匹配之后,我们通过三个说明性案例证明了使用该模型发现新的潜在制造过程的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Brain activity reveals how wildlife imagery evokes engagement on social media. Projecting the new body: How body image evolves during learning to walk with a wearable robot. Political censorship in large language models originating from China. Labeling messages as AI-generated does not reduce their persuasive effects. The "I" in egalitarianism: Hadza hunter-gatherers averse to inequality primarily when personally unfavorable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1