A Novel Pipeline for Adrenal Gland Segmentation: Integration of a Hybrid Post-Processing Technique with Deep Learning.

Michael Fayemiwo, Bryan Gardiner, Jim Harkin, Liam McDaid, Punit Prakash, Michael Dennedy
{"title":"A Novel Pipeline for Adrenal Gland Segmentation: Integration of a Hybrid Post-Processing Technique with Deep Learning.","authors":"Michael Fayemiwo, Bryan Gardiner, Jim Harkin, Liam McDaid, Punit Prakash, Michael Dennedy","doi":"10.1007/s10278-025-01449-y","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of adrenal glands from CT images is essential for enhancing computer-aided diagnosis and surgical planning. However, the small size, irregular shape, and proximity to surrounding tissues make this task highly challenging. This study introduces a novel pipeline that significantly improves the segmentation of left and right adrenal glands by integrating advanced pre-processing techniques and a robust post-processing framework. Utilising a 2D UNet architecture with various backbones (VGG16, ResNet34, InceptionV3), the pipeline leverages test-time augmentation (TTA) and targeted removal of unconnected regions to enhance accuracy and robustness. Our results demonstrate a substantial improvement, with a 38% increase in the Dice similarity coefficient for the left adrenal gland and an 11% increase for the right adrenal gland on the AMOS dataset, achieved by the InceptionV3 model. Additionally, the pipeline significantly reduces false positives, underscoring its potential for clinical applications and its superiority over existing methods. These advancements make our approach a crucial contribution to the field of medical image segmentation.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":"3698-3710"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12701139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01449-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate segmentation of adrenal glands from CT images is essential for enhancing computer-aided diagnosis and surgical planning. However, the small size, irregular shape, and proximity to surrounding tissues make this task highly challenging. This study introduces a novel pipeline that significantly improves the segmentation of left and right adrenal glands by integrating advanced pre-processing techniques and a robust post-processing framework. Utilising a 2D UNet architecture with various backbones (VGG16, ResNet34, InceptionV3), the pipeline leverages test-time augmentation (TTA) and targeted removal of unconnected regions to enhance accuracy and robustness. Our results demonstrate a substantial improvement, with a 38% increase in the Dice similarity coefficient for the left adrenal gland and an 11% increase for the right adrenal gland on the AMOS dataset, achieved by the InceptionV3 model. Additionally, the pipeline significantly reduces false positives, underscoring its potential for clinical applications and its superiority over existing methods. These advancements make our approach a crucial contribution to the field of medical image segmentation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肾上腺分割的新管道:将混合后处理技术与深度学习相结合。
从 CT 图像中准确分割肾上腺对于提高计算机辅助诊断和手术规划至关重要。然而,由于肾上腺体积小、形状不规则且靠近周围组织,因此这项任务极具挑战性。本研究引入了一种新型管道,通过整合先进的预处理技术和稳健的后处理框架,显著提高了左右肾上腺的分割能力。该管道利用具有不同骨干(VGG16、ResNet34、InceptionV3)的二维 UNet 架构,利用测试时间增强(TTA)和有针对性地移除非连接区域来提高准确性和鲁棒性。我们的研究结果表明,在 AMOS 数据集上,通过 InceptionV3 模型,左肾上腺的 Dice 相似性系数提高了 38%,右肾上腺提高了 11%。此外,该管道还大大降低了误报率,凸显了其在临床应用中的潜力以及与现有方法相比的优越性。这些进步使我们的方法对医学图像分割领域做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of ISS and R-ISS Stratification in Newly Diagnosed Multiple Myeloma Using Lumbar Spine MRI Radiomics Model: A Two-Center Multimodal Study. A Novel Hybrid Model Based on GAN and Stacking for Improving Minority Class Detection in an Imbalanced Dataset of Endotracheal Tubes Position Errors. Deep Learning for Ultrasound Classification to Identify Noninvasive Follicular Thyroid Neoplasms with Papillary-Like Nuclear Features. Predicting Overall Survival of NSCLC Patients with Clinical, Radiomics and Deep Learning Features. AI-Based Automated Detection and Classification of Osteoporosis in Females from Dental Panoramic Radiographs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1