La3ZrGa5O14: Band-inversion Strategy in Topology-Protected Octahedron for Large Nonlinear Response and Wide Bandgap

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-03-06 DOI:10.1002/anie.202503341
Dazhi Lu, Yuzhou Wang, Xiaoheng Li, Fei Liang, Kui Wu, Haohai Yu, Huaijin Zhang
{"title":"La3ZrGa5O14: Band-inversion Strategy in Topology-Protected Octahedron for Large Nonlinear Response and Wide Bandgap","authors":"Dazhi Lu, Yuzhou Wang, Xiaoheng Li, Fei Liang, Kui Wu, Haohai Yu, Huaijin Zhang","doi":"10.1002/anie.202503341","DOIUrl":null,"url":null,"abstract":"The contradictory relationship between band gaps and the second-harmonic generation (SHG) response constitutes a formidable challenge in the rational design of infrared nonlinear optical (IR NLO) crystals. In oxide-based crystals, the incorporation of strongly distorted octahedra containing d0 cations as central elements is a common approach to enhance SHG responses, while inadvertently leading to a significant decrease in band gaps due to the unfavorable energy level splitting. In this study, we introduced an innovative \"4d/5s electron band-inversion\" strategy to enhance SHG response while preserving a wide band gap within the octahedron-symmetry-protected langasite structure. We successfully synthesized a novel high-performance IR NLO crystal, La3ZrGa5O14 (LGZr), where the unoccupied 4d orbitals of the Zr4+ cation underwent a transition from the valence band to the bottom of the conduction band, and the ZrO6 octahedra exhibited minimal distortion. Consequently, LGZr exhibited the largest SHG response observed to date (reaching up to 2.4× La3Nb0.5Ga5.5O14) and the broadest band gap (5.16 eV) within the langasite family. Furthermore, LGZr was revealed with a remarkable laser damage threshold (1.66 GW/cm2) and broad IR transmission capabilities (~7.8 μm), and supported the growth of centimeter-sized crystals. The \"band-inversion strategy\" offers significant advantages to realize high-performance IR NLO crystals.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"11 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503341","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The contradictory relationship between band gaps and the second-harmonic generation (SHG) response constitutes a formidable challenge in the rational design of infrared nonlinear optical (IR NLO) crystals. In oxide-based crystals, the incorporation of strongly distorted octahedra containing d0 cations as central elements is a common approach to enhance SHG responses, while inadvertently leading to a significant decrease in band gaps due to the unfavorable energy level splitting. In this study, we introduced an innovative "4d/5s electron band-inversion" strategy to enhance SHG response while preserving a wide band gap within the octahedron-symmetry-protected langasite structure. We successfully synthesized a novel high-performance IR NLO crystal, La3ZrGa5O14 (LGZr), where the unoccupied 4d orbitals of the Zr4+ cation underwent a transition from the valence band to the bottom of the conduction band, and the ZrO6 octahedra exhibited minimal distortion. Consequently, LGZr exhibited the largest SHG response observed to date (reaching up to 2.4× La3Nb0.5Ga5.5O14) and the broadest band gap (5.16 eV) within the langasite family. Furthermore, LGZr was revealed with a remarkable laser damage threshold (1.66 GW/cm2) and broad IR transmission capabilities (~7.8 μm), and supported the growth of centimeter-sized crystals. The "band-inversion strategy" offers significant advantages to realize high-performance IR NLO crystals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Synthesis of Glycolipid Library Reminiscent of Mycobacterial Cell Wall Motif A and Its Significance by Microscopy Unlocking Reactivity of Unprotected Oximes via Green-Light-Driven Dual Copper/Organophotoredox Catalysis Two-Color Single-Molecule Blinking Ratiometricity: A Functional Super-Resolution Imaging Approach for Resolving Lysosomal pH and Dynamics Breaking Linear Scaling Relation Limitations on a Dual-driven Single-atom Copper/Tungsten Oxide Catalyst for Ammonia Synthesis Anchor Peptide-based Immobilization Strategy Promote the Applications of Pickering Emulsion System in Natural Product Glycosylation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1