Musa Najimu, Matthew J. Hurlock, Sahanaz Parvin, Courtney Brea, Neelesh Kumar, Yoon Jin Cho, Yiqing Wu, Guoxiang Hu, Zili Wu, Eranda Nikolla, Jonas Baltrusaitis, Tina M. Nenoff, Israel E. Wachs, Kandis Leslie Gilliard-AbdulAziz
{"title":"Impact of SO2 on NiFe Nanoparticle Exsolution and Dissolution from LaFe0.9Ni0.1O3 Perovskite Oxides","authors":"Musa Najimu, Matthew J. Hurlock, Sahanaz Parvin, Courtney Brea, Neelesh Kumar, Yoon Jin Cho, Yiqing Wu, Guoxiang Hu, Zili Wu, Eranda Nikolla, Jonas Baltrusaitis, Tina M. Nenoff, Israel E. Wachs, Kandis Leslie Gilliard-AbdulAziz","doi":"10.1021/acs.chemmater.4c03439","DOIUrl":null,"url":null,"abstract":"Ni-doped LaFeO<sub>3</sub> perovskite oxide is a promising cathode material for solid oxide electrolysis cells (SOECs) designed for CO<sub>2</sub>/H<sub>2</sub>O coelectrolysis. The performance of LaFe<sub>0.9</sub>Ni<sub>0.1</sub>O<sub>3</sub> is being investigated under real-world conditions that include exposure to acid gases, such as SO<sub>2</sub>, relevant to SOEC operation. Experiments show that LaFe<sub>0.9</sub>Ni<sub>0.1</sub>O<sub>3</sub> exsolves NiFe nanoparticles, along with the formation of surface SO<sub>4</sub><sup>2–</sup> and SO<sub>3</sub><sup>2–</sup> after being exposed to 200 ppm of SO<sub>2</sub>. This suggests that the ionic diffusion of Ni<sup>3+</sup> and Fe<sup>3+</sup> between the bulk and the surface remains unaffected throughout the exsolution–dissolution–exsolution cycle. Thermochemical water splitting has been employed as a probe reaction to evaluate the catalytic properties of the exsolved NiFe nanoparticles. These nanoparticles demonstrated improved hydrogen production compared to bare perovskite oxide substrates. However, after exposure to SO<sub>2</sub>, the formation of Fe-rich NiFe nanoparticles led to poor thermocatalytic performance and rapid deactivation of the perovskite at elevated temperatures. Density functional theory (DFT) analysis was utilized to validate the experimental findings, indicating a significantly negative reaction energy for water splitting over exsolved Fe, as well as stronger binding of SO<sub>2</sub> to Fe than to Ni. Computational analysis further suggests that the presence of surface sulfate promotes the formation of Fe-rich NiFe nanoparticles, aligning with the experimental results. Overall, this study clarifies how SO<sub>2</sub> affects the structure of SOEC perovskite oxide candidate materials. Future engineering efforts should focus on enhancing nanoparticle exsolution and sulfur resistance, which is crucial for improving the hydrogen production capacity of La-based perovskite oxides for electro- and thermocatalytic water splitting in real environments containing acid gases.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"18 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c03439","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ni-doped LaFeO3 perovskite oxide is a promising cathode material for solid oxide electrolysis cells (SOECs) designed for CO2/H2O coelectrolysis. The performance of LaFe0.9Ni0.1O3 is being investigated under real-world conditions that include exposure to acid gases, such as SO2, relevant to SOEC operation. Experiments show that LaFe0.9Ni0.1O3 exsolves NiFe nanoparticles, along with the formation of surface SO42– and SO32– after being exposed to 200 ppm of SO2. This suggests that the ionic diffusion of Ni3+ and Fe3+ between the bulk and the surface remains unaffected throughout the exsolution–dissolution–exsolution cycle. Thermochemical water splitting has been employed as a probe reaction to evaluate the catalytic properties of the exsolved NiFe nanoparticles. These nanoparticles demonstrated improved hydrogen production compared to bare perovskite oxide substrates. However, after exposure to SO2, the formation of Fe-rich NiFe nanoparticles led to poor thermocatalytic performance and rapid deactivation of the perovskite at elevated temperatures. Density functional theory (DFT) analysis was utilized to validate the experimental findings, indicating a significantly negative reaction energy for water splitting over exsolved Fe, as well as stronger binding of SO2 to Fe than to Ni. Computational analysis further suggests that the presence of surface sulfate promotes the formation of Fe-rich NiFe nanoparticles, aligning with the experimental results. Overall, this study clarifies how SO2 affects the structure of SOEC perovskite oxide candidate materials. Future engineering efforts should focus on enhancing nanoparticle exsolution and sulfur resistance, which is crucial for improving the hydrogen production capacity of La-based perovskite oxides for electro- and thermocatalytic water splitting in real environments containing acid gases.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.