{"title":"Palladium-Catalyzed C(O)–C Bond Cleavage of Unstrained Ketones Assisted with Aryl Handles: An Approach to Diaryl Ketones","authors":"Qiang Li, Yang Long, Qinyue Tao, Zewei Jin, Xufei Yan, Xiangge Zhou","doi":"10.1021/acs.orglett.5c00455","DOIUrl":null,"url":null,"abstract":"C–C bond cleavage reactions have achieved remarkable progress in molecular deconstruction and skeleton editing. In this study, we describe a palladium-catalyzed synthesis of diaryl ketones through a sequence of α-arylation and aerobic oxidative C–C bond cleavage. This transformation features good functional group compatibility, especially for highly reactive groups, including −OH, NH<sub>2</sub>, and −CHO. Furthermore, this approach allows for gram-scale synthesis in a low catalyst loading manner. It also streamlines the synthesis of a variety of drugs or their intermediates. Mechanism studies reveal the essential role of utilizing a bulky ligand and the existence of air as the reaction atmosphere.","PeriodicalId":54,"journal":{"name":"Organic Letters","volume":"58 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.orglett.5c00455","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
C–C bond cleavage reactions have achieved remarkable progress in molecular deconstruction and skeleton editing. In this study, we describe a palladium-catalyzed synthesis of diaryl ketones through a sequence of α-arylation and aerobic oxidative C–C bond cleavage. This transformation features good functional group compatibility, especially for highly reactive groups, including −OH, NH2, and −CHO. Furthermore, this approach allows for gram-scale synthesis in a low catalyst loading manner. It also streamlines the synthesis of a variety of drugs or their intermediates. Mechanism studies reveal the essential role of utilizing a bulky ligand and the existence of air as the reaction atmosphere.
期刊介绍:
Organic Letters invites original reports of fundamental research in all branches of the theory and practice of organic, physical organic, organometallic,medicinal, and bioorganic chemistry. Organic Letters provides rapid disclosure of the key elements of significant studies that are of interest to a large portion of the organic community. In selecting manuscripts for publication, the Editors place emphasis on the originality, quality and wide interest of the work. Authors should provide enough background information to place the new disclosure in context and to justify the rapid publication format. Back-to-back Letters will be considered. Full details should be reserved for an Article, which should appear in due course.