{"title":"A paradigm shift from traditional non-contact sensors to tele-perception","authors":"Jiaxin Guo, Yan Du, Zhonglin Wang, Di Wei","doi":"10.1039/d4ta09222h","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of embodied perception technologies, the demand for enhanced interaction versatility, extended perceptual reach, and heightened sensitivity in human-machine interfaces (HMI) continues to grow. Triboelectric nanogenerator (TENG) based non-contact sensors have emerged as a transformative solution, offering exceptional adaptability while mitigating challenges such as mechanical degradation and potential health risks. However, achieving superior sensitivity and extending sensing ranges remain critical bottlenecks. Addressing these limitations, researchers have pioneered the concept of tele-perception, a groundbreaking innovation that breaks the limitations of traditional non-contact sensors by enabling precise, long-range perceptual capabilities. This review explores the paradigm shift from traditional non-contact sensors to tele-perception, highlighting the foundational principles, representative system architectures, and cutting-edge optimization strategies that define this new approach to sensing without physical interaction. Particular emphasis is placed on the integration of advanced charge-trapping mechanisms to enhance electrostatic charge stability and the deployment of intelligent algorithms and deep learning (DL) techniques to advance tele-perception functionalities. Concluding with an analysis of the challenges and future opportunities in tele-perception systems development, this review offers critical insights to guide next-generation research and applications in this transformative field.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"2 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta09222h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of embodied perception technologies, the demand for enhanced interaction versatility, extended perceptual reach, and heightened sensitivity in human-machine interfaces (HMI) continues to grow. Triboelectric nanogenerator (TENG) based non-contact sensors have emerged as a transformative solution, offering exceptional adaptability while mitigating challenges such as mechanical degradation and potential health risks. However, achieving superior sensitivity and extending sensing ranges remain critical bottlenecks. Addressing these limitations, researchers have pioneered the concept of tele-perception, a groundbreaking innovation that breaks the limitations of traditional non-contact sensors by enabling precise, long-range perceptual capabilities. This review explores the paradigm shift from traditional non-contact sensors to tele-perception, highlighting the foundational principles, representative system architectures, and cutting-edge optimization strategies that define this new approach to sensing without physical interaction. Particular emphasis is placed on the integration of advanced charge-trapping mechanisms to enhance electrostatic charge stability and the deployment of intelligent algorithms and deep learning (DL) techniques to advance tele-perception functionalities. Concluding with an analysis of the challenges and future opportunities in tele-perception systems development, this review offers critical insights to guide next-generation research and applications in this transformative field.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.