Radiation environment on TGO Mars orbit during solar particle events in January–October 2024. Corresponding solar eruptions and GOES proton fluxes data

IF 2.9 3区 生物学 Q2 ASTRONOMY & ASTROPHYSICS Life Sciences in Space Research Pub Date : 2025-03-02 DOI:10.1016/j.lssr.2025.02.010
Jordanka Semkova , Rositza Koleva , Victor Benghin , Nat Gopalswamy , Yuri Matviichuk , Borislav Tomov , Krasimir Krastev , Stephan Maltchev , Tsvetan Dachev , Nikolay Bankov , Vyacheslav Shurshakov , Sergey Drobyshev , Igor Mitrofanov , Dmitry Golovin , Maxim Litvak , Anton Sanin , Maxim Mokrousov , Nikita Lukyanov , Artem Anikin
{"title":"Radiation environment on TGO Mars orbit during solar particle events in January–October 2024. Corresponding solar eruptions and GOES proton fluxes data","authors":"Jordanka Semkova ,&nbsp;Rositza Koleva ,&nbsp;Victor Benghin ,&nbsp;Nat Gopalswamy ,&nbsp;Yuri Matviichuk ,&nbsp;Borislav Tomov ,&nbsp;Krasimir Krastev ,&nbsp;Stephan Maltchev ,&nbsp;Tsvetan Dachev ,&nbsp;Nikolay Bankov ,&nbsp;Vyacheslav Shurshakov ,&nbsp;Sergey Drobyshev ,&nbsp;Igor Mitrofanov ,&nbsp;Dmitry Golovin ,&nbsp;Maxim Litvak ,&nbsp;Anton Sanin ,&nbsp;Maxim Mokrousov ,&nbsp;Nikita Lukyanov ,&nbsp;Artem Anikin","doi":"10.1016/j.lssr.2025.02.010","DOIUrl":null,"url":null,"abstract":"<div><div>The dosimeter Liulin-MO for measuring the radiation environment on board the ExoMars Trace Gas Orbiter (TGO) is a module in the Fine Resolution Epithermal Neutron Detector (FREND).</div><div>A number of solar energetic particle (SEP) events were observed in Mars orbit from July 2021 to 2024 during the increasing phase and close to the maximum of the 25th solar cycle activity. The results from the SEPs measurements obtained in 2021–2023 by Liulin-MO have been previously reported. Here we present the Liulin-MO results from the observation of the radiation parameters of the SEP events during January- October 2024. The most powerful SEP event registered up to now in TGO orbit started on 20 May 2024<strong>.</strong> The maximum dose rate during this SEP event has been 2800 ± 280 µGy h<sup>-1</sup> and the maximum particle flux – 383 ± 19 cm<sup>-2</sup> s<sup>-1</sup>. The total event lasted for about 64 hours up to 24 May with a long tail of increased dose rates and fluxes. The total dose from SEPs for the 64 hours of the main phase of the SEP event was 24.7 ± 2.5 mGy. The total dose from SEPs during this event is equal to the dose from the galactic cosmic rays (GCR) received for about 200 days at this phase of solar cycle 25. The total dose from all SEPs during January – September 2024 is 36.6 mGy (in Si), which is approximately equal to the dose received from GCR for the same period.</div><div>The observations of SEPs in Mars orbit are compared to the observations during the same periods of proton fluxes measured by the GOES satellite in Earth orbit. The results show that some of the SEPs observed in Mars orbit, excluding the biggest SEP events of 20-24 May and 05-07 September, are also seen in the GOES proton fluxes data. SEP events recorded both in Mars and Earth orbits are related to coronal mass ejections (CMEs) observed by the SOHO and STEREO A coronagraphs. The paper shows that responsible for most of the SEP events registered both in the Liulin-MO data and in the GOES proton fluxes data are halo CMEs. The paper also shows that the sources of the three most powerful SEP events in Mars orbit – those of 20 May, 23 July and 05 September – are halo CMEs from the far side of the Sun. Some of these CMEs are associated with major X class far-side flares.</div><div>Long-term investigations of the GCRs radiation parameters in Mars orbit show that in August 2024 (the last month of our data with no recorded SEP events) the dose rate was 6.5 ± 0.65 µGy h<sup>-1</sup> and the particle flux – 1.4 ± 0.07 cm<sup>-2</sup> s<sup>-1</sup>. These values are about 40 % of the corresponding maximal values measured by Liulin-MO during the solar cycle 24 minimum in March 2020.</div><div>The above results show the importance of long-term measurements (at least during a full solar cycle) of the radiation conditions in Mars vicinity. Such measurements will make it possible to obtain the data necessary for the planning of future manned and robotic missions, as well as for the selection of the best time interval in the solar cycle for a manned flight to the planet.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"45 ","pages":"Pages 117-134"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552425000306","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dosimeter Liulin-MO for measuring the radiation environment on board the ExoMars Trace Gas Orbiter (TGO) is a module in the Fine Resolution Epithermal Neutron Detector (FREND).
A number of solar energetic particle (SEP) events were observed in Mars orbit from July 2021 to 2024 during the increasing phase and close to the maximum of the 25th solar cycle activity. The results from the SEPs measurements obtained in 2021–2023 by Liulin-MO have been previously reported. Here we present the Liulin-MO results from the observation of the radiation parameters of the SEP events during January- October 2024. The most powerful SEP event registered up to now in TGO orbit started on 20 May 2024. The maximum dose rate during this SEP event has been 2800 ± 280 µGy h-1 and the maximum particle flux – 383 ± 19 cm-2 s-1. The total event lasted for about 64 hours up to 24 May with a long tail of increased dose rates and fluxes. The total dose from SEPs for the 64 hours of the main phase of the SEP event was 24.7 ± 2.5 mGy. The total dose from SEPs during this event is equal to the dose from the galactic cosmic rays (GCR) received for about 200 days at this phase of solar cycle 25. The total dose from all SEPs during January – September 2024 is 36.6 mGy (in Si), which is approximately equal to the dose received from GCR for the same period.
The observations of SEPs in Mars orbit are compared to the observations during the same periods of proton fluxes measured by the GOES satellite in Earth orbit. The results show that some of the SEPs observed in Mars orbit, excluding the biggest SEP events of 20-24 May and 05-07 September, are also seen in the GOES proton fluxes data. SEP events recorded both in Mars and Earth orbits are related to coronal mass ejections (CMEs) observed by the SOHO and STEREO A coronagraphs. The paper shows that responsible for most of the SEP events registered both in the Liulin-MO data and in the GOES proton fluxes data are halo CMEs. The paper also shows that the sources of the three most powerful SEP events in Mars orbit – those of 20 May, 23 July and 05 September – are halo CMEs from the far side of the Sun. Some of these CMEs are associated with major X class far-side flares.
Long-term investigations of the GCRs radiation parameters in Mars orbit show that in August 2024 (the last month of our data with no recorded SEP events) the dose rate was 6.5 ± 0.65 µGy h-1 and the particle flux – 1.4 ± 0.07 cm-2 s-1. These values are about 40 % of the corresponding maximal values measured by Liulin-MO during the solar cycle 24 minimum in March 2020.
The above results show the importance of long-term measurements (at least during a full solar cycle) of the radiation conditions in Mars vicinity. Such measurements will make it possible to obtain the data necessary for the planning of future manned and robotic missions, as well as for the selection of the best time interval in the solar cycle for a manned flight to the planet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Life Sciences in Space Research
Life Sciences in Space Research Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
5.30
自引率
8.00%
发文量
69
期刊介绍: Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research. Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.
期刊最新文献
Radiation environment on TGO Mars orbit during solar particle events in January–October 2024. Corresponding solar eruptions and GOES proton fluxes data Solid rocket motor insulation adhesives with sporicidal activity promote planetary protection for deep space missions Simulated microgravity activates autophagy expression in the rat retina Lunar dust induces minimal pulmonary toxicity compared to Earth dust Effects of X-ray irradiation and housing conditions on mitochondria in Peromyscus maniculatus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1