Spatial heterogeneity and driving factors of temperature sensitivity of soil respiration (Q10) at national scale

IF 3.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geochemical Exploration Pub Date : 2025-02-25 DOI:10.1016/j.gexplo.2025.107742
Mi Tian , Chao Wu , Xueqiu Wang , Binbin Sun , Jian Zhou , Qinghai Hu , Wei Wang , Hanliang Liu , Baoyun Zhang , Yu Qiao
{"title":"Spatial heterogeneity and driving factors of temperature sensitivity of soil respiration (Q10) at national scale","authors":"Mi Tian ,&nbsp;Chao Wu ,&nbsp;Xueqiu Wang ,&nbsp;Binbin Sun ,&nbsp;Jian Zhou ,&nbsp;Qinghai Hu ,&nbsp;Wei Wang ,&nbsp;Hanliang Liu ,&nbsp;Baoyun Zhang ,&nbsp;Yu Qiao","doi":"10.1016/j.gexplo.2025.107742","DOIUrl":null,"url":null,"abstract":"<div><div>Temperature sensitivity of soil respiration (Q10) plays an important role in terrestrial soil carbon-climate feedback. However, Q10 exhibits significant spatial heterogeneity on a large scale, and the factors influencing its spatial variability are not yet fully understood. In this research, we collected Q10 values from 236 field studies in China to explore the spatial heterogeneity and controlling factors of Q10 values at national scale. The relative importance of different climate factors such as annual average temperature (MAT), annual average temperature (MAP) and evapotranspiration (ET), soil geochemical factors including pH, soil organic carbon, soil total nitrogen, C/N, metal oxides, vegetation types and geological backgrounds in predicting Q10 values were explored using a random forest model. The study found that the range of Q10 values in China is 1.17–5.51, with a median of 2.3 and a mean of 2.47. The main influencing factors of the spatial variation of temperature sensitivity of soil respiration Q10 at the national scale are the supply and quality of soil respiration substrates. The more soil organic carbon content, the bigger the Q10. The more difficult it is to decompose (the more complex the molecular structure presented by correlations between Q10 and C/N, and the more mineral-bounded organic carbon presented by correlations between Q10 and FeO), the stronger the temperature sensitivity of soil respiration. In comparison, the influence of climate factors on Q10 is less important and complex, Q10 increases nonlinearly with the increase of ET and decreases with the increase of temperature. The Q10 value is higher when the precipitation is moderate (800-1200 mm), and decreases when there is excessive or insufficient rainfall. In summary, the interaction between soil geochemical factors and climate controls the storage and turnover of soil organic carbon, and soil geochemistry plays the most important role. The results of this study are helpful for accurately assessing the global soil organic carbon storage and spatiotemporal changes, and are of great significance for studying the feedback mechanism of organic carbon under the background of global carbon cycle and global warming.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"273 ","pages":"Article 107742"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674225000743","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature sensitivity of soil respiration (Q10) plays an important role in terrestrial soil carbon-climate feedback. However, Q10 exhibits significant spatial heterogeneity on a large scale, and the factors influencing its spatial variability are not yet fully understood. In this research, we collected Q10 values from 236 field studies in China to explore the spatial heterogeneity and controlling factors of Q10 values at national scale. The relative importance of different climate factors such as annual average temperature (MAT), annual average temperature (MAP) and evapotranspiration (ET), soil geochemical factors including pH, soil organic carbon, soil total nitrogen, C/N, metal oxides, vegetation types and geological backgrounds in predicting Q10 values were explored using a random forest model. The study found that the range of Q10 values in China is 1.17–5.51, with a median of 2.3 and a mean of 2.47. The main influencing factors of the spatial variation of temperature sensitivity of soil respiration Q10 at the national scale are the supply and quality of soil respiration substrates. The more soil organic carbon content, the bigger the Q10. The more difficult it is to decompose (the more complex the molecular structure presented by correlations between Q10 and C/N, and the more mineral-bounded organic carbon presented by correlations between Q10 and FeO), the stronger the temperature sensitivity of soil respiration. In comparison, the influence of climate factors on Q10 is less important and complex, Q10 increases nonlinearly with the increase of ET and decreases with the increase of temperature. The Q10 value is higher when the precipitation is moderate (800-1200 mm), and decreases when there is excessive or insufficient rainfall. In summary, the interaction between soil geochemical factors and climate controls the storage and turnover of soil organic carbon, and soil geochemistry plays the most important role. The results of this study are helpful for accurately assessing the global soil organic carbon storage and spatiotemporal changes, and are of great significance for studying the feedback mechanism of organic carbon under the background of global carbon cycle and global warming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geochemical Exploration
Journal of Geochemical Exploration 地学-地球化学与地球物理
CiteScore
7.40
自引率
7.70%
发文量
148
审稿时长
8.1 months
期刊介绍: Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics. Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to: define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas. analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation. evaluate effects of historical mining activities on the surface environment. trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices. assess and quantify natural and technogenic radioactivity in the environment. determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis. assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches. Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.
期刊最新文献
Assessment of LUNAR, iForest, LOF, and LSCP methodologies in delineating geochemical anomalies for mineral exploration Silicon isotope behavior during silica diagenesis recorded by silica sinters in a geothermal system, Xizang, China Editorial Board A high-performance extreme gradient boosting outlier detection framework for integrating the outputs of diverse anomaly detectors for detecting mineralization-related geochemical anomalies Geochemistry, geochronology and Fe-Mg-S isotopic composition of the Liaoshang gold deposit, Jiaodong Peninsula, China: Implications for ore-forming processes and mineral exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1