New results for drift estimation in inhomogeneous stochastic differential equations

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2025-01-27 DOI:10.1016/j.jmva.2025.105415
Fabienne Comte, Valentine Genon-Catalot
{"title":"New results for drift estimation in inhomogeneous stochastic differential equations","authors":"Fabienne Comte,&nbsp;Valentine Genon-Catalot","doi":"10.1016/j.jmva.2025.105415","DOIUrl":null,"url":null,"abstract":"<div><div>We consider <span><math><mi>N</mi></math></span> independent and identically distributed (<em>i.i.d.</em>) stochastic processes <span><math><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mi>t</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></mrow><mo>)</mo></mrow></math></span>, <span><math><mrow><mi>j</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi><mo>}</mo></mrow></mrow></math></span>, defined by a one-dimensional stochastic differential equation (SDE) with time-dependent drift and diffusion coefficient. In this context, the nonparametric estimation of a general drift function <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> from a continuous observation of the <span><math><mi>N</mi></math></span> sample paths on <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></mrow></math></span> has never been investigated. Considering a set <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>=</mo><mrow><mo>[</mo><mi>ϵ</mi><mo>,</mo><mi>T</mi><mo>]</mo></mrow><mo>×</mo><mi>A</mi></mrow></math></span>, with <span><math><mrow><mi>ϵ</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>A</mi><mo>⊂</mo><mi>R</mi></mrow></math></span>, we build by a projection method an estimator of <span><math><mi>b</mi></math></span> on <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>ϵ</mi></mrow></msub></math></span>. As the function is bivariate, this amounts to estimating a matrix of projection coefficients instead of a vector for univariate functions. We make use of Kronecker products, which simplifies the mathematical treatment of the problem. We study the risk of the estimator and distinguish the case where <span><math><mrow><mi>ϵ</mi><mo>=</mo><mn>0</mn></mrow></math></span> and the case <span><math><mrow><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span> compact. In the latter case, we investigate rates of convergence and prove a lower bound showing that our estimator is minimax. We propose a data-driven choice of the projection space dimension leading to an adaptive estimator. Examples of models and numerical simulation results are proposed. The method is easy to implement and works well, although computationally slower than for the estimation of a univariate function.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105415"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider N independent and identically distributed (i.i.d.) stochastic processes (Xj(t),t[0,T]), j{1,,N}, defined by a one-dimensional stochastic differential equation (SDE) with time-dependent drift and diffusion coefficient. In this context, the nonparametric estimation of a general drift function b(t,x) from a continuous observation of the N sample paths on [0,T] has never been investigated. Considering a set Iϵ=[ϵ,T]×A, with ϵ0 and AR, we build by a projection method an estimator of b on Iϵ. As the function is bivariate, this amounts to estimating a matrix of projection coefficients instead of a vector for univariate functions. We make use of Kronecker products, which simplifies the mathematical treatment of the problem. We study the risk of the estimator and distinguish the case where ϵ=0 and the case ϵ>0 and A=[a,b] compact. In the latter case, we investigate rates of convergence and prove a lower bound showing that our estimator is minimax. We propose a data-driven choice of the projection space dimension leading to an adaptive estimator. Examples of models and numerical simulation results are proposed. The method is easy to implement and works well, although computationally slower than for the estimation of a univariate function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们考虑 N 个独立且同分布(i.i.d.)的随机过程 (Xj(t),t∈[0,T]),j∈{1,...,N},它们由一维随机微分方程(SDE)定义,具有随时间变化的漂移和扩散系数。在这种情况下,从 [0,T] 上 N 个样本路径的连续观测中对一般漂移函数 b(t,x) 进行非参数估计的问题从未被研究过。考虑到集合 Iϵ=[ϵ,T]×A,其中ϵ≥0 且 A⊂R,我们用投影法在 Iϵ 上建立一个 b 的估计器。由于函数是双变量的,这相当于估计一个投影系数矩阵,而不是单变量函数的向量。我们利用 Kronecker 积简化了问题的数学处理。我们研究了估计器的风险,并区分了 ϵ=0 的情况和 ϵ>0 且 A=[a,b] 紧凑的情况。在后一种情况下,我们研究了收敛率,并证明了一个下限,表明我们的估计器是最小的。我们提出了一种数据驱动的投影空间维度选择,从而产生了一种自适应估计器。我们还提出了模型实例和数值模拟结果。该方法易于实现且运行良好,尽管与单变量函数估计相比计算速度较慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Editorial Board Minimaxity under the half-Cauchy prior On estimation and order selection for multivariate extremes via clustering Set-valued expectiles for ordered data analysis Ledoit-Wolf linear shrinkage with unknown mean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1