Unraveling the enhanced urea selectivity in electroreduction of CO2 and nitrate over Bimetallic CuZn catalysts

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2025-03-06 DOI:10.1016/j.mcat.2025.114978
Binxin Lv , Jiayue Yu , Fengchen Zhou , Zizi Wang , Junjun Zhang , Yifan Zhang , Yang Wu , Yong Wang , Wen Luo
{"title":"Unraveling the enhanced urea selectivity in electroreduction of CO2 and nitrate over Bimetallic CuZn catalysts","authors":"Binxin Lv ,&nbsp;Jiayue Yu ,&nbsp;Fengchen Zhou ,&nbsp;Zizi Wang ,&nbsp;Junjun Zhang ,&nbsp;Yifan Zhang ,&nbsp;Yang Wu ,&nbsp;Yong Wang ,&nbsp;Wen Luo","doi":"10.1016/j.mcat.2025.114978","DOIUrl":null,"url":null,"abstract":"<div><div>Urea electrosynthesis plays a vital role in the nitrogen cycle, promoting carbon neutrality while also being energy-efficient. However, the complexities involved in the simultaneous of carbon and nitrogen-containing species significantly hinder the selectivity and yield of urea. In this study, we report a CuZn bimetallic catalyst that is capable of converting CO<sub>2</sub> and NO<sub>3</sub><sup>⁻</sup> into urea, with a maximum Faraday efficiency of 40% at -0.6 V vs. RHE, alongside an impressive urea yield rate of 304.8 mmol h<sup>⁻¹</sup> g<sub>cat</sub><sup>⁻¹</sup> at -0.9 V vs. RHE, surpassing the performance of both monometallic Cu and Zn catalysts. In situ spectroscopic analysis demonstrates that the Cu sites within CuZn facilitates the adsorption and activation of CO<sub>2</sub> and NO<sub>3</sub><sup>⁻</sup>, while Zn sites additionally facilitate CO<sub>2</sub> adsorption and reduces the adsorption strength of *CO and *NH<sub>2</sub> on the catalyst surface, collectively promoting the formation of *CONH<sub>2</sub> as a key intermediate in urea synthesis. This study highlights the unique role of zinc in urea synthesis, offers new insights into optimizing the performance of copper-zinc catalysts, and serves as a valuable reference for future research on the role of zinc in urea synthesis.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"578 ","pages":"Article 114978"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125001646","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Urea electrosynthesis plays a vital role in the nitrogen cycle, promoting carbon neutrality while also being energy-efficient. However, the complexities involved in the simultaneous of carbon and nitrogen-containing species significantly hinder the selectivity and yield of urea. In this study, we report a CuZn bimetallic catalyst that is capable of converting CO2 and NO3 into urea, with a maximum Faraday efficiency of 40% at -0.6 V vs. RHE, alongside an impressive urea yield rate of 304.8 mmol h⁻¹ gcat⁻¹ at -0.9 V vs. RHE, surpassing the performance of both monometallic Cu and Zn catalysts. In situ spectroscopic analysis demonstrates that the Cu sites within CuZn facilitates the adsorption and activation of CO2 and NO3, while Zn sites additionally facilitate CO2 adsorption and reduces the adsorption strength of *CO and *NH2 on the catalyst surface, collectively promoting the formation of *CONH2 as a key intermediate in urea synthesis. This study highlights the unique role of zinc in urea synthesis, offers new insights into optimizing the performance of copper-zinc catalysts, and serves as a valuable reference for future research on the role of zinc in urea synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示双金属CuZn催化剂上CO2和硝酸盐电还原过程中尿素选择性的增强
尿素电合成在氮循环中起着至关重要的作用,促进了碳中和,同时也节约了能源。然而,含碳和含氮物质同时存在的复杂性极大地阻碍了尿素的选择性和产率。在这项研究中,我们报道了一种CuZn双金属催化剂,它能够将CO2和NO3转化为尿素,在-0.6 V相对于RHE的条件下,法拉第效率最高可达40%,同时在-0.9 V相对于RHE的条件下,尿素的产出率为304.8 mmol h⁻¹gcat⁻¹,超过了单金属Cu和Zn催化剂的性能。原位光谱分析表明,CuZn中的Cu位点促进了CO2和NO3的吸附和活化,同时Zn位点也促进了CO2的吸附,降低了*CO和*NH2在催化剂表面的吸附强度,共同促进了*CONH2的形成,这是尿素合成的关键中间体。该研究突出了锌在尿素合成中的独特作用,为优化铜锌催化剂的性能提供了新的见解,为进一步研究锌在尿素合成中的作用提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
sulfonamide
阿拉丁
potassium nitrite
阿拉丁
ammonium chloride
阿拉丁
potassium nitrate
阿拉丁
sodium nitroprusside
阿拉丁
salicylic acid
阿拉丁
sodium citrate dihydrate
阿拉丁
sodium hypochlorite solution
阿拉丁
N-(1-naphthyl) ethylenediamine hydrochloride
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Modulation of basic sites for enhanced COS hydrolysis performance over NaY zeolite catalysts Silica-supported heteropoly acids as catalysts for low-temperature dehydration of 1-butanol in the gas phase: Application and mechanistic insight Valorization of fly ash to Au/CaA zeolite catalyst for selective oxidation of HMF to HMFCA: A waste-to-wealth strategy High effectively fixing nitrogen by Carbon-doped amorphous TiO2 with abundant oxygen vacancies under visible light and normal pressure and temperature Intramolecular S-scheme of g-C3N4 to boost photocatalytic hydrogen evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1