Novel RSSI-Based localization in LoRaWAN using probability density estimation similarity-based techniques

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Internet of Things Pub Date : 2025-03-04 DOI:10.1016/j.iot.2025.101551
Mauricio González-Palacio , Mario Luna-delRisco , John García-Giraldo , Carlos Arrieta-González , Liliana González-Palacio , Christof Röhrig , Long Bao Le
{"title":"Novel RSSI-Based localization in LoRaWAN using probability density estimation similarity-based techniques","authors":"Mauricio González-Palacio ,&nbsp;Mario Luna-delRisco ,&nbsp;John García-Giraldo ,&nbsp;Carlos Arrieta-González ,&nbsp;Liliana González-Palacio ,&nbsp;Christof Röhrig ,&nbsp;Long Bao Le","doi":"10.1016/j.iot.2025.101551","DOIUrl":null,"url":null,"abstract":"<div><div>In localization tasks of Internet of Things (IoT) End Nodes (ENs), the network lifetime and energy efficiency are critical. Due to power constraints, traditional systems like the Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and Galileo may be unsuitable for IoT applications. As a result, Long-Range Wide Area Network (LoRaWAN) has gained attention due to its large coverage and low power requirements. Traditional localization strategies typically estimate the distance between the EN and Anchor Nodes (ANs) using the Received Signal Strength Indicator (RSSI) combined with a path loss model. However, the accuracy of such an approach can be compromised by different undesirable transmission effects, such as interference, affecting the RSSI. This work introduces a novel distance estimation method that leverages the similarity between Probability Density Functions (PDFs) of RSSI from measurement campaigns and those from deployed ENs. By employing metrics including the enhanced versions of Euclidean and Minkowski distances, the proposed approach surpasses conventional channel-based techniques, achieving a Mean Absolute Percentage Error (MAPE) of 3.9% for wireless environments with a shadowing standard deviation up to 16<!--> <!-->dB. Furthermore, when utilizing Kernel Density Estimation (KDE) for localization, the method demonstrated an 95.1% enhancement in accuracy compared to the localization strategy based on the loglinear path loss model.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101551"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000642","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In localization tasks of Internet of Things (IoT) End Nodes (ENs), the network lifetime and energy efficiency are critical. Due to power constraints, traditional systems like the Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and Galileo may be unsuitable for IoT applications. As a result, Long-Range Wide Area Network (LoRaWAN) has gained attention due to its large coverage and low power requirements. Traditional localization strategies typically estimate the distance between the EN and Anchor Nodes (ANs) using the Received Signal Strength Indicator (RSSI) combined with a path loss model. However, the accuracy of such an approach can be compromised by different undesirable transmission effects, such as interference, affecting the RSSI. This work introduces a novel distance estimation method that leverages the similarity between Probability Density Functions (PDFs) of RSSI from measurement campaigns and those from deployed ENs. By employing metrics including the enhanced versions of Euclidean and Minkowski distances, the proposed approach surpasses conventional channel-based techniques, achieving a Mean Absolute Percentage Error (MAPE) of 3.9% for wireless environments with a shadowing standard deviation up to 16 dB. Furthermore, when utilizing Kernel Density Estimation (KDE) for localization, the method demonstrated an 95.1% enhancement in accuracy compared to the localization strategy based on the loglinear path loss model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
期刊最新文献
Novel RSSI-Based localization in LoRaWAN using probability density estimation similarity-based techniques Quantum-resistant hardware-accelerated IoT traffic encryptor CONCERN: A model-based monitoring infrastructure Towards privacy-preserving split learning: Destabilizing adversarial inference and reconstruction attacks in the cloud A secure image encryption mechanism using biased Fourier quantum walk and addition-crossover structure in the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1