Cobalt substitution impact on structural modifications and capacitive contributions of BiVO4 nanorods for promising pseudocapacitors electrode applications

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: B Pub Date : 2025-03-07 DOI:10.1016/j.mseb.2025.118199
Khudija Munir , Ghulam Nabi
{"title":"Cobalt substitution impact on structural modifications and capacitive contributions of BiVO4 nanorods for promising pseudocapacitors electrode applications","authors":"Khudija Munir ,&nbsp;Ghulam Nabi","doi":"10.1016/j.mseb.2025.118199","DOIUrl":null,"url":null,"abstract":"<div><div>Morphology tuning at the nanoscale, along with crystal imperfections introduced by ion doping, plays a crucial role in enhancing electrochemical performance. Here, pristine and cobalt (Co) doped bismuth vanadate (Co-BiVO<sub>4</sub>) elongated nanorods were synthesized and optimized by varying Co-ion concentrations (0 wt%, 2 wt%, 4 wt%, 6 wt%, 8 wt%) for potential applications as pseudocapacitor electrode materials. The aim was to investigate the structural and capacitive contributions of Co substitution. The pristine BiVO<sub>4</sub> exhibited a spherical nanoparticle morphology and a specific capacitance of 676F/g after 5000 GCD cycles. In contrast, the 6 wt% Co-doped BiVO<sub>4</sub>, which exhibited an elongated nanorod morphology, demonstrated significant improvements in nanostructure and electrochemical performance, achieving an impressive specific capacitance of 1472F/g at 1 A/g, with excellent stability and 89 % retention over 5000 GCD cycles. Power law analysis (b = 0.81) and the Dunn method (58.22 % capacitive contribution at 75 mV/s) confirmed its suitability for pseudocapacitor applications. Low R<sub>s</sub> values from EIS and high specific capacitance position Co-BiVO<sub>4</sub> nanorods as promising candidates for addressing energy storage demands in supercapacitors.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"317 ","pages":"Article 118199"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725002223","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Morphology tuning at the nanoscale, along with crystal imperfections introduced by ion doping, plays a crucial role in enhancing electrochemical performance. Here, pristine and cobalt (Co) doped bismuth vanadate (Co-BiVO4) elongated nanorods were synthesized and optimized by varying Co-ion concentrations (0 wt%, 2 wt%, 4 wt%, 6 wt%, 8 wt%) for potential applications as pseudocapacitor electrode materials. The aim was to investigate the structural and capacitive contributions of Co substitution. The pristine BiVO4 exhibited a spherical nanoparticle morphology and a specific capacitance of 676F/g after 5000 GCD cycles. In contrast, the 6 wt% Co-doped BiVO4, which exhibited an elongated nanorod morphology, demonstrated significant improvements in nanostructure and electrochemical performance, achieving an impressive specific capacitance of 1472F/g at 1 A/g, with excellent stability and 89 % retention over 5000 GCD cycles. Power law analysis (b = 0.81) and the Dunn method (58.22 % capacitive contribution at 75 mV/s) confirmed its suitability for pseudocapacitor applications. Low Rs values from EIS and high specific capacitance position Co-BiVO4 nanorods as promising candidates for addressing energy storage demands in supercapacitors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钴取代对BiVO4纳米棒的结构修饰和电容贡献的影响
纳米尺度上的形貌调整,以及离子掺杂引入的晶体缺陷,对提高电化学性能起着至关重要的作用。在这里,通过不同的Co离子浓度(0 wt%, 2 wt%, 4 wt%, 6 wt%, 8 wt%),合成了原始和掺杂钴(Co)的钒酸铋(Co- bivo4)细长纳米棒,并对其进行了优化。目的是研究Co取代的结构和电容贡献。原始BiVO4具有球形纳米颗粒形态,经过5000 GCD循环后的比电容为676F/g。相比之下,6 wt%共掺杂的BiVO4表现出拉长的纳米棒形态,在纳米结构和电化学性能上有了显著的改善,在1 A/g下实现了令人印象深刻的1472F/g比电容,具有出色的稳定性和超过5000 GCD循环89%的保留率。幂律分析(b = 0.81)和Dunn方法(75 mV/s时58.22%电容贡献)证实了其适用于伪电容器应用。EIS的低Rs值和高比电容使Co-BiVO4纳米棒成为解决超级电容器储能需求的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Ordering of diphenylalanine micro/nanotubes prepared in PDMS microchannels with and without electric field Wearable cooling device with integrated contact cooling and thermoelectric energy harvesting Emergence of anomalous Hall effect in a semiconducting van der Waals heterostructure with a strong altermagnetic feature Er3+-activated BaLa2WO7 multifunctional green phosphors for optical temperature sensing, fingerprint visualization and WLEDs Industrialization of one-step grain boundary diffusion method to achieve optimized core-shell structure and magnetic performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1