{"title":"Self-distributive Structures in Physics","authors":"Tobias Fritz","doi":"10.1007/s10773-025-05909-7","DOIUrl":null,"url":null,"abstract":"<div><p>It is an important feature of our existing physical theories that observables generate one-parameter groups of transformations. In classical Hamiltonian mechanics and quantum mechanics, this is due to the fact that the observables form a Lie algebra, and it manifests itself in Noether’s theorem. In this paper, we propose <i>Lie quandles</i> as the minimal mathematical structure needed to express the idea that observables generate transformations. This is based on the notion of a quandle used most famously in knot theory, whose main defining property is the self-distributivity equation <span>\\(x \\triangleright (y \\triangleright z) = (x \\triangleright y) \\triangleright (x \\triangleright z)\\)</span>. We argue that Lie quandles can be thought of as nonlinear generalizations of Lie algebras. We also observe that taking convex combinations of points in vector spaces, which physically corresponds to mixing states, satisfies the same form of self-distributivity.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05909-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is an important feature of our existing physical theories that observables generate one-parameter groups of transformations. In classical Hamiltonian mechanics and quantum mechanics, this is due to the fact that the observables form a Lie algebra, and it manifests itself in Noether’s theorem. In this paper, we propose Lie quandles as the minimal mathematical structure needed to express the idea that observables generate transformations. This is based on the notion of a quandle used most famously in knot theory, whose main defining property is the self-distributivity equation \(x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)\). We argue that Lie quandles can be thought of as nonlinear generalizations of Lie algebras. We also observe that taking convex combinations of points in vector spaces, which physically corresponds to mixing states, satisfies the same form of self-distributivity.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.