Plant polysaccharide-capped nanoparticles: A sustainable approach to modulate gut microbiota and advance functional food applications

IF 12 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Comprehensive Reviews in Food Science and Food Safety Pub Date : 2025-03-07 DOI:10.1111/1541-4337.70156
Gafar Babatunde Bamigbade, Mohamed Abdin, Athira Subhash, Maduni Paththuwe Arachchi, Naeem Ullah, Ren-You Gan, Abdelmoneim Ali, Afaf Kamal-Eldin, Mutamed Ayyash
{"title":"Plant polysaccharide-capped nanoparticles: A sustainable approach to modulate gut microbiota and advance functional food applications","authors":"Gafar Babatunde Bamigbade,&nbsp;Mohamed Abdin,&nbsp;Athira Subhash,&nbsp;Maduni Paththuwe Arachchi,&nbsp;Naeem Ullah,&nbsp;Ren-You Gan,&nbsp;Abdelmoneim Ali,&nbsp;Afaf Kamal-Eldin,&nbsp;Mutamed Ayyash","doi":"10.1111/1541-4337.70156","DOIUrl":null,"url":null,"abstract":"<p>Plant-derived polysaccharides have emerged as sustainable biopolymers for fabricating nanoparticles (polysaccharide-based nanomaterials [PS-NPs]), presenting unique opportunities to enhance food functionality and human health. PS-NPs exhibit exceptional biocompatibility, biodegradability, and structural versatility, enabling their integration into functional foods to positively influence gut microbiota. This review explores the mechanisms of PS-NPs interaction with gut microbiota, highlighting their ability to promote beneficial microbial populations, such as Lactobacilli and Bifidobacteria, and stimulate the production of short-chain fatty acids. Key synthesis and stabilization methods of PS-NPs are discussed, focusing on their role in improving bioavailability, stability, and gastrointestinal delivery of bioactive compounds in food systems. The potential of PS-NPs to address challenges in food science, including enhancing nutrient absorption, mitigating intestinal dysbiosis, and supporting sustainable food production through innovative nanotechnology, is critically evaluated. Barriers such as enzymatic degradation and physicochemical stability are analyzed, alongside strategies to optimize their functionality within complex food matrices. The integration of PS-NPs in food systems offers a novel approach to modulate gut microbiota, improve intestinal health, and drive the development of next-generation functional foods. Future research should focus on bridging knowledge gaps in metagenomic and metabolomic profiling of PS-NPs, optimizing their design for diverse applications, and advancing their role in sustainable and health-promoting food innovations.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70156","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-derived polysaccharides have emerged as sustainable biopolymers for fabricating nanoparticles (polysaccharide-based nanomaterials [PS-NPs]), presenting unique opportunities to enhance food functionality and human health. PS-NPs exhibit exceptional biocompatibility, biodegradability, and structural versatility, enabling their integration into functional foods to positively influence gut microbiota. This review explores the mechanisms of PS-NPs interaction with gut microbiota, highlighting their ability to promote beneficial microbial populations, such as Lactobacilli and Bifidobacteria, and stimulate the production of short-chain fatty acids. Key synthesis and stabilization methods of PS-NPs are discussed, focusing on their role in improving bioavailability, stability, and gastrointestinal delivery of bioactive compounds in food systems. The potential of PS-NPs to address challenges in food science, including enhancing nutrient absorption, mitigating intestinal dysbiosis, and supporting sustainable food production through innovative nanotechnology, is critically evaluated. Barriers such as enzymatic degradation and physicochemical stability are analyzed, alongside strategies to optimize their functionality within complex food matrices. The integration of PS-NPs in food systems offers a novel approach to modulate gut microbiota, improve intestinal health, and drive the development of next-generation functional foods. Future research should focus on bridging knowledge gaps in metagenomic and metabolomic profiling of PS-NPs, optimizing their design for diverse applications, and advancing their role in sustainable and health-promoting food innovations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.20
自引率
2.70%
发文量
182
期刊介绍: Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology. CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results. Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity. The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.
期刊最新文献
Plant polysaccharide-capped nanoparticles: A sustainable approach to modulate gut microbiota and advance functional food applications Current insights into heat treatment for improving functionalities of soy protein: A review A comprehensive review on the promising purple leaf tea Comprehensive review of chickpea (Cicer arietinum): Nutritional significance, health benefits, techno-functionalities, and food applications Food substances alter gut resistome: Mechanisms, health impacts, and food components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1