Enhancing Glassy Dynamics Prediction by Incorporating Displacement from the Initial to Equilibrium State.

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-03-20 Epub Date: 2025-03-06 DOI:10.1021/acs.jpcb.4c07532
Xiao Jiang, Zean Tian, Yikun Hu, Kejun Dong, Wangyu Hu, Yongbao Ai
{"title":"Enhancing Glassy Dynamics Prediction by Incorporating Displacement from the Initial to Equilibrium State.","authors":"Xiao Jiang, Zean Tian, Yikun Hu, Kejun Dong, Wangyu Hu, Yongbao Ai","doi":"10.1021/acs.jpcb.4c07532","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the structure-dynamic relationship during the glass transition remains a complex challenge. Recent studies suggest that machine learning (ML) models improve in predicting glassy dynamics when incorporating the distance from the initial to equilibrium states. However, the directional aspect of particle vibrations within the cage has been overlooked. To address this, we propose using vectorial displacement from the initial to equilibrium states as a structural input to ML models. Then, we introduce the Equivariance-Constrained Invariant Graph Neural Network (EIGNN), which uses the displacement parameter to facilitate the structural encoding of the initial configuration and equilibrium configuration. Experimental validation on a three-dimensional (3D) Kob-Andersen system from the GlassBench data set demonstrates that EIGNN significantly enhances the understanding of structure-dynamics correlations and shows robust temperature transferability. Finally, the role of displacement parameters in representing the local bond orientation order is demonstrated through a simplified version of EIGNN, referred to as EIGNN++. These findings underscore the critical role of the orientation of cage dynamics in improving the predictive power of glassy dynamics models.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3053-3064"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07532","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the structure-dynamic relationship during the glass transition remains a complex challenge. Recent studies suggest that machine learning (ML) models improve in predicting glassy dynamics when incorporating the distance from the initial to equilibrium states. However, the directional aspect of particle vibrations within the cage has been overlooked. To address this, we propose using vectorial displacement from the initial to equilibrium states as a structural input to ML models. Then, we introduce the Equivariance-Constrained Invariant Graph Neural Network (EIGNN), which uses the displacement parameter to facilitate the structural encoding of the initial configuration and equilibrium configuration. Experimental validation on a three-dimensional (3D) Kob-Andersen system from the GlassBench data set demonstrates that EIGNN significantly enhances the understanding of structure-dynamics correlations and shows robust temperature transferability. Finally, the role of displacement parameters in representing the local bond orientation order is demonstrated through a simplified version of EIGNN, referred to as EIGNN++. These findings underscore the critical role of the orientation of cage dynamics in improving the predictive power of glassy dynamics models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用从初始到平衡状态的位移增强玻璃动力学预测。
理解玻璃化转变过程中的结构-动力学关系仍然是一个复杂的挑战。最近的研究表明,当纳入从初始状态到平衡状态的距离时,机器学习(ML)模型在预测玻璃动力学方面有所改进。然而,粒子在笼内振动的方向性方面一直被忽视。为了解决这个问题,我们建议使用从初始状态到平衡状态的矢量位移作为ML模型的结构输入。然后,我们引入了等效约束不变图神经网络(EIGNN),该网络利用位移参数方便了初始构型和平衡构型的结构编码。来自GlassBench数据集的三维(3D) kobo - andersen系统的实验验证表明,EIGNN显着增强了对结构动力学相关性的理解,并显示出强大的温度可转移性。最后,通过EIGNN的简化版本(eignn++)演示了位移参数在表示局部键取向顺序方面的作用。这些发现强调了笼动力学方向在提高玻璃动力学模型的预测能力方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
The Electrostatic Interaction between a Dielectric Interface and a Point-Charge-in-Cavity Ion. Charge-Scaled Polarizable Force Field for Modeling Diffusion in Deep Eutectic Solvents. Concentration-Dependent Nanoscale Network Connectivity in Water-Lean CO2 Capture Solvent Clusters Revealed by Structural Studies. Correction to "Force Fields for Molecular Modeling of Sarin and its Simulants: DMMP and DIMP". Composite Xerogels Based on Poly(methacrylic acid) and High Concentrations of LTA Zeolite: Solid-State NMR Investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1