Triboelectric Nanogenerators Based on Composites of Zeolitic Imidazolate Frameworks Functionalized with Halogenated Ligands for Contact and Rotational Mechanical Energy Harvesting.

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-02-18 eCollection Date: 2025-02-28 DOI:10.1021/acsanm.4c06732
Jiahao Ye, Tianhuai Xu, Jin-Chong Tan
{"title":"Triboelectric Nanogenerators Based on Composites of Zeolitic Imidazolate Frameworks Functionalized with Halogenated Ligands for Contact and Rotational Mechanical Energy Harvesting.","authors":"Jiahao Ye, Tianhuai Xu, Jin-Chong Tan","doi":"10.1021/acsanm.4c06732","DOIUrl":null,"url":null,"abstract":"<p><p>Triboelectric nanogenerator (TENG) based on the coupling effect of triboelectrification and electrostatic induction can convert mechanical motions into electric energy. Recent studies have found that metal-organic framework materials are promising triboelectric materials due to their large surface area and excellent tunability. In this study, we incorporated isostructural zeolitic imidazolate frameworks, ZIF-8-X (X = CH<sub>3</sub>, Br, Cl), into poly(vinylidene fluoride) (PVDF) electrospun fibers and assembled them in TENG devices to investigate the underlying relationship between functional group electronegativity (via varied imidazolate linkers) and triboelectric output performance. Results show that ZIF-8-Cl/PVDF composite fiber demonstrated the highest average voltage and current output of 312.4 ± 2.0 V and 4.90 ± 0.07 μA, respectively, which are 3.8 and 5.5 times higher than that of the pristine PVDF. The practicality of ZIF-8-X-based TENG was tested for harvesting energy from oscillatory motions to power up LEDs and capacitors. A freestanding mode TENG based on ZIF-8-Cl was also designed to harvest rotational energy without physical contact for wider applications. The working mechanism of ZIF-8-X-based TENG was also revealed through nanoscale-resolved chemical studies, providing valuable insights into the design of MOF materials for improved performance of TENGs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 8","pages":"3942-3953"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c06732","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Triboelectric nanogenerator (TENG) based on the coupling effect of triboelectrification and electrostatic induction can convert mechanical motions into electric energy. Recent studies have found that metal-organic framework materials are promising triboelectric materials due to their large surface area and excellent tunability. In this study, we incorporated isostructural zeolitic imidazolate frameworks, ZIF-8-X (X = CH3, Br, Cl), into poly(vinylidene fluoride) (PVDF) electrospun fibers and assembled them in TENG devices to investigate the underlying relationship between functional group electronegativity (via varied imidazolate linkers) and triboelectric output performance. Results show that ZIF-8-Cl/PVDF composite fiber demonstrated the highest average voltage and current output of 312.4 ± 2.0 V and 4.90 ± 0.07 μA, respectively, which are 3.8 and 5.5 times higher than that of the pristine PVDF. The practicality of ZIF-8-X-based TENG was tested for harvesting energy from oscillatory motions to power up LEDs and capacitors. A freestanding mode TENG based on ZIF-8-Cl was also designed to harvest rotational energy without physical contact for wider applications. The working mechanism of ZIF-8-X-based TENG was also revealed through nanoscale-resolved chemical studies, providing valuable insights into the design of MOF materials for improved performance of TENGs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Forum Focused on South American Authors Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1