Characterization of RufT Thioesterase Domain Reveals Insights into Rufomycin Cyclization and the Biosynthetic Origin of Rufomyazine.

IF 3.8 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2025-03-21 Epub Date: 2025-03-06 DOI:10.1021/acschembio.4c00802
Yaoyu Ding, Gustavo Perez-Ortiz, Alexandra-Georgiana Butulan, Hamzah Sharif, Sarah M Barry
{"title":"Characterization of RufT Thioesterase Domain Reveals Insights into Rufomycin Cyclization and the Biosynthetic Origin of Rufomyazine.","authors":"Yaoyu Ding, Gustavo Perez-Ortiz, Alexandra-Georgiana Butulan, Hamzah Sharif, Sarah M Barry","doi":"10.1021/acschembio.4c00802","DOIUrl":null,"url":null,"abstract":"<p><p>The nonribosomal cyclic peptides (NRcPs) rufomycins, produced by <i>Streptomyces atratus</i>, have attracted attention as antimycobacterials. Thus, there has been interest in engineering the corresponding biosynthetic pathway to produce novel derivatives. We have thus investigated the type I thioesterase (TE) of the NRPS RufT that catalyzes rufomycin peptide macrocyclization to understand its tolerance to changes in substrate peptide sequence. In contrast to our previously reported efficient cyclization chemistry, the recombinant RufT-TE domain and RufT-PCP-TE didomain, while tolerating some substrate structural changes, both produce high levels of hydrolyzed peptide. Closer analysis led to the identification of the natural product diketopiperazine rufomyazine in assays. The data indicate, with significant implications for rufomycin production, that RufT produces both cyclic and linear peptides. We propose that rufomyazine forms non-enzymatically from the linear peptide. In addition, it provides evidence for TE domains as gatekeepers in NRPS biosynthesis.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"573-580"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934086/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00802","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The nonribosomal cyclic peptides (NRcPs) rufomycins, produced by Streptomyces atratus, have attracted attention as antimycobacterials. Thus, there has been interest in engineering the corresponding biosynthetic pathway to produce novel derivatives. We have thus investigated the type I thioesterase (TE) of the NRPS RufT that catalyzes rufomycin peptide macrocyclization to understand its tolerance to changes in substrate peptide sequence. In contrast to our previously reported efficient cyclization chemistry, the recombinant RufT-TE domain and RufT-PCP-TE didomain, while tolerating some substrate structural changes, both produce high levels of hydrolyzed peptide. Closer analysis led to the identification of the natural product diketopiperazine rufomyazine in assays. The data indicate, with significant implications for rufomycin production, that RufT produces both cyclic and linear peptides. We propose that rufomyazine forms non-enzymatically from the linear peptide. In addition, it provides evidence for TE domains as gatekeepers in NRPS biosynthesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RufT硫酯酶结构域的表征揭示了rufoomycin环化和rufoomyazine的生物合成起源。
由atatatus链霉菌产生的非核糖体环肽(nrcp) rufoomycin作为抗细菌药物引起了广泛的关注。因此,人们对设计相应的生物合成途径来生产新的衍生物很感兴趣。因此,我们研究了NRPS RufT中催化rufo霉素肽大环化的I型硫酯酶(TE),以了解其对底物肽序列变化的耐受性。与我们之前报道的高效环化化学相反,重组RufT-TE结构域和RufT-PCP-TE双结构域在耐受一些底物结构变化的同时,都能产生高水平的水解肽。进一步分析鉴定出天然产物双酮哌嗪和鲁弗米嗪。这些数据表明,RufT同时产生环状肽和线性肽,这对rufoomycin的生产具有重要意义。我们提出rufomyazine是由线性肽非酶化形成的。此外,它还提供了TE结构域在NRPS生物合成中作为看门人的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Extensive Alanine Scanning of Loop Regions in Ketosynthase Domains Identifies Non-Active Site Mutations with Drastic Effects on Polyketide Biosynthesis. Chemical Strategies for Controlling Sulfation in Biomacromolecules. Systematic Profiling of Peptide Substrate Specificity in N-Terminal Processing by Methionine Aminopeptidase Using mRNA Display and an Unnatural Methionine Analogue. Small Molecule-Controlled Gene Expression: Design of Drug-like High-Affinity Modulators of a Custom-Made Riboswitch. Probing the Effect of α-Helical Stapling Strategies on the Inhibition of Peptide Aggregation and Amyloid Cytotoxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1