Saugata Sahu, Ammathnadu S Amrutha, Nobuyuki Tamaoki
{"title":"Controlling Protein Functionalities With Temporal and Cellular/Subcellular Dimensions of Spatial Resolution With Molecular Photoswitches.","authors":"Saugata Sahu, Ammathnadu S Amrutha, Nobuyuki Tamaoki","doi":"10.1002/med.22106","DOIUrl":null,"url":null,"abstract":"<p><p>The use of photoswitchable ligand to control the protein functionalities and related downstream effects in an on-off manner is an active research area in photopharmacology and medicinal chemistry. Temporal control grants a privilege to identify the crucial role of a particular receptor in biological occurrences without destroying the protein permanently. Additionally, light can be applied site-selectively to regulate protein functionality with cellular and sub-cellular levels of spatial resolutions. The spatiotemporal resolution enables the probing of a specific receptor, a receptor isoform, or a particular signalling pathway. This reversible and fast spatiotemporal control is highly beneficial in studying protein functionalities in highly dynamic biological processes, including but not limited to signal transduction, neurotransmission, cell divisions, immune response, protein folding, and protein degradation. Though several light-active ligands have been developed to control protein functionality in an on-off manner efficiently, only a few reports on protein functionality with spatial resolution exist in the literature. Major challenges to achieve efficient photoswitches to study protein functionalities are efficient synthesis strategy, photostability of the ligand, bidirectional visible light switching ability and most importantly precise controlling of the local concentration of desired photoisomer using light. The site-specific localization of the active photoisomer depends on multiple factors like the nature of the photoswitch, the binding affinity of both photoisomers, molecular diffusion and light irradiation conditions. The present review discusses suitable techniques and the role of different factors in achieving cellular and subcellular dimension control in protein functionality. Multiple strategies are discussed, along with their advantages and limitations, to explore the enormous potentiality of these approaches in manipulating protein functionality.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":" ","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/med.22106","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of photoswitchable ligand to control the protein functionalities and related downstream effects in an on-off manner is an active research area in photopharmacology and medicinal chemistry. Temporal control grants a privilege to identify the crucial role of a particular receptor in biological occurrences without destroying the protein permanently. Additionally, light can be applied site-selectively to regulate protein functionality with cellular and sub-cellular levels of spatial resolutions. The spatiotemporal resolution enables the probing of a specific receptor, a receptor isoform, or a particular signalling pathway. This reversible and fast spatiotemporal control is highly beneficial in studying protein functionalities in highly dynamic biological processes, including but not limited to signal transduction, neurotransmission, cell divisions, immune response, protein folding, and protein degradation. Though several light-active ligands have been developed to control protein functionality in an on-off manner efficiently, only a few reports on protein functionality with spatial resolution exist in the literature. Major challenges to achieve efficient photoswitches to study protein functionalities are efficient synthesis strategy, photostability of the ligand, bidirectional visible light switching ability and most importantly precise controlling of the local concentration of desired photoisomer using light. The site-specific localization of the active photoisomer depends on multiple factors like the nature of the photoswitch, the binding affinity of both photoisomers, molecular diffusion and light irradiation conditions. The present review discusses suitable techniques and the role of different factors in achieving cellular and subcellular dimension control in protein functionality. Multiple strategies are discussed, along with their advantages and limitations, to explore the enormous potentiality of these approaches in manipulating protein functionality.
期刊介绍:
Medicinal Research Reviews is dedicated to publishing timely and critical reviews, as well as opinion-based articles, covering a broad spectrum of topics related to medicinal research. These contributions are authored by individuals who have made significant advancements in the field.
Encompassing a wide range of subjects, suitable topics include, but are not limited to, the underlying pathophysiology of crucial diseases and disease vectors, therapeutic approaches for diverse medical conditions, properties of molecular targets for therapeutic agents, innovative methodologies facilitating therapy discovery, genomics and proteomics, structure-activity correlations of drug series, development of new imaging and diagnostic tools, drug metabolism, drug delivery, and comprehensive examinations of the chemical, pharmacological, pharmacokinetic, pharmacodynamic, and clinical characteristics of significant drugs.