{"title":"Metal Halide Perovskite Single-Crystal Thin Films: From Films Growth to Light-Emitting Application.","authors":"Hengyu Cao, Weiyu Cheng, Chen Wang, Lutao Li, Ruonan Wang, Xiangle Sun, Huahai Lai, Xinke Feng, Fengcheng Zhang, Guifu Zou","doi":"10.1002/smtd.202401861","DOIUrl":null,"url":null,"abstract":"<p><p>Metal halide perovskites (MHPs) show optoelectronic properties that are highly advantageous for light-emitting applications. Compared to polycrystalline (PC) perovskite, single-crystal (SC) perovskite exhibits high carrier mobility, reducing ion migration and suppressing Auger recombination. However, SC perovskite light-emitting diodes (SC-PeLEDs) face the following challenges: i) the growth of high-aspect-ratio SC films; ii) the interfacial contact between the SC light-emitting layers and the carrier transport layers. This review begins with the growth methods of MHP SC thin films. Then, the recent research progress of SC-PeLEDs is summarized, and the strategies for optimizing device performance are also reviewed. Finally, perspectives are proposed further to enhance the performance and practical application of SC-PeLEDs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401861"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401861","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskites (MHPs) show optoelectronic properties that are highly advantageous for light-emitting applications. Compared to polycrystalline (PC) perovskite, single-crystal (SC) perovskite exhibits high carrier mobility, reducing ion migration and suppressing Auger recombination. However, SC perovskite light-emitting diodes (SC-PeLEDs) face the following challenges: i) the growth of high-aspect-ratio SC films; ii) the interfacial contact between the SC light-emitting layers and the carrier transport layers. This review begins with the growth methods of MHP SC thin films. Then, the recent research progress of SC-PeLEDs is summarized, and the strategies for optimizing device performance are also reviewed. Finally, perspectives are proposed further to enhance the performance and practical application of SC-PeLEDs.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.